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The 1D dispersion relation of a nanotube is obtained by simply slicing the 2D graphene cone with
a line in k space offset by some vector k0:
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where the Fermi velocity vF is given by:

vF =
3γ0a0
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a0 is the C-C bond length and γ0 is the tight binding nearest neighbour energy overlap integral.
The relation between the offset k0 and the bandgap Eg is:

Eg = 2h̄vF k0

For semiconducting (large band gap) tubes, the band gap is determined only by the tube diameter:
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The density of states is given by:
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The first factor of two is from spin, and the factor of 4 is from the plus and minus k branches of
each cone plus the K −K ′ degeneracy. Using the energy expression above, we get:
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Defining n = N/L as the linear electron density and using the above expression for vF , we then
have:
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Putting in a value of γ0 = 2.9 eV and a0 = 1.42 Å gives a Fermi velocity of vF = 0.95 × 106 m/s
and a density of states of:

dE

dn
= 0.48 mV per e/µm

For an electron density of 100 electrons / micron, we get a Fermi energy of 48 mV.
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