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1 Density of states

The 1D dispersion relation of a nanotube is obtained by simply slicing the 2D graphene cone
with a line in k space offset by some vector k0:

E = ±h̄vF

√
k2

x + k2
0

where the Fermi velocity vF is given by:

vF =
3γ0a0

2h̄

a0 is the C-C bond length and γ0 is the tight binding nearest neighbour energy overlap integral.
(Note: similar formulas appear with a

√
3 when a0 is defined as lattice constant instead of the

bond length.) The relation between the offset k0 and the bandgap Eg is:

Eg = 2h̄vF k0

For semiconducting (large band gap) tubes, the band gap is determined only by the tube diam-
eter:

Eg =
γ0a0

d

The density of states is given by:
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The first factor of two is from spin, and the factor of 4 is from the plus and minus k branches
of each cone plus the K −K ′ degeneracy. Using the energy expression above, we get:
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Defining n = N/L as the linear electron density and using the above expression for vF , we then
have:

dn

dE
=

8
3πγ0a0

E√
E2 − (Eg/2)2

Putting in a value of γ0 = 2.9 eV and a0 = 1.42 Å gives a Fermi velocity of vF = 0.95× 106 m/s
and a density of states of:

dE

dn
= 0.48 mV per e/µm
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For an electron density of 100 electrons / micron, we get a Fermi energy of 48 mV.

We can also calculate the single particle level spacing for a confined quantum dot of length L in
a metallic tube with a hard-wall potential:

∆E = h̄vF
π

L
=

hvf

2L

An extra factor of 2 is sometimes included in the denomenator assuming that the sub-band
splitting between the two K points is exactly 2∆E (Codben in cond-mat/0112331). In terms of
γ0 and a0:

hvF /2 = h̄vF π = h̄
3γ0a0

2h̄
π =

3π

2
γ0a0

With γ0 = 2.9 eV and a0 = 0.142 nm, corresponding to vF = 0.95× 106 m/s (0.00315c), we get:

hvF /2 = 1940 meV nm

Thus a 100 nm electrode separation gives a level spacing of 19.4 eV and a 1000 nm separation
gives a level spacing of 1.94 eV. Some estimates from papers are: 2 mv for 750 nm (Finkelstein
cond-mat/0508401) and 9.3 mV for 180 nm (Sapmaz cond-mat/0411530, vF = 8.1× 106 m/s).

2 Effective Mass

For semiconducting tubes, the level spacing will be smaller due to the curvature at the bottom
of the bands, leading to a light effective mass. The mass depends only on the band gap. We
start with the dispersion relation:

E = h̄vF

√
k2 + k2

0 = h̄vF k0

√
1 + k2/k2

0

For k << k0 using
√

1 + x ≈ 1 + x/2 we get:

E = h̄vF k0 +
h̄vF

2k0
k2

Defining the effective mass as:

E =
h̄2k2

2m∗ =
h̄vF k2

2k0

gives

m∗ =
h̄k0

vF

In terms of the band gap Eg = 2h̄vF k0 and the bare electron mass me, we get:

m∗

me
=

Eg

2mev2
F

Using mc2 = 0.511× 106 eV and vF = 0.00315c, we get mev
2
F = 5.16 eV, and we then have:

m∗

me
=

Eg

2 ∗ 5.12 eV

For a 100 mV gap, we get an effective mass of 0.0097 or about 0.01.
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3 Tunnel Barrier Resistances

Using the effective mass from the previous section, we can calculate the maximum possible
resistance of a tunnel barrier formed in a carbon nanotube as a function of the barrier length.

The maximum barrier height for a nanotube with a band gap of Eg is achieved when the quasi
Fermi energy lies in the middle of the band gap, giving a barrier height of Eg/2.1 For a square
barrier of length d and height V , the transmission probability is:

T (E) =
1

1 + V 2

4E(V−E) sinh2(a/2l)

where l is the probability density decay length and is given by:

l =
1
2

√
h̄2

2m(V − E)

For small tranmission probabilities, this can be approximated as

T (E) ≈ 16E(V − E)
V 2

e−a/l

which shows the exponential decay we expect with barrier length2. The tunnel conductance can
be calculated easily for a nanotube using the Landauer formula:

G =
2e2N

h
T =

4e2

h
T

where the factor of two comes from the two valleys (4e2/h = 6.35 kΩ). Here we assume that only
one transverse mode in the nanotube is occupied, which is reasonable since the Fermi energy is
typically much smaller that the subband splitting. Here are some concrete numbers for a 100
nm barrier:

Eg = 300 mV V = 150 mV l = 19 nm Tmin = 2.3× 10−9

E = 15 mV m = 0.029 RT = 2.72 GΩ

Eg = 100 mV V = 50 mV l = 58 nm Tmin = 0.0015
E = 5 mV m = 0.0097 RT = 4.2 MΩ

Eg = 20 mV V = 10 mV l = 291 nm Tmin = 0.39
E = 1 mV m = 0.0019 RT = 16 kΩ

Eg = 5 mV V = 2.5 mV l = 1167 nm Tmin = 0.92
E = 0.25 mV m = 0.00048 RT = 6.87 kΩ

1For this calculation, we will naively ignore the presence of a nearby valance band, ignoring such possibilities
as the virtual tunneling of an electron through a hole state. My intuition is that this may reduce the effective
barrier heigth perhaps by a factor of two...

2see https://faculty.washington.edu/seattle/physics541/14solved.pdf
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