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Abstract

In this work, simulation results on realistic carbon nanotube devices are presented. A
simulation program was developed to model quantum dots in semiconducting nanotubes, be-
ing controlled by external gates only. The simulation program numerically solves the Poisson
equation, and can be combined with the Thomas-Fermi approximation and Hartree approx-
imation to model the many electron regime for the nanotube. For two electrons in a double
quantum dot, exact solutions of the two-electron Schrödinger equation are presented, where
screening of the gates and leads in the modeled device is included in the external potential,
as well as in the Coulomb interaction between the two electrons.

Classical 3D electrostatic simulations have shown that suspending a nanotube results in
a better coupling of the quantum dot to the single electron transistor (SET) and that back-
action is reduced. Overall sensitivity of the SET is increased by suspending the nanotube.

We have used the Thomas-Fermi approximation to show that splitgates can be used to
control a quantum dot in a semiconducting nanotube. The Hartree approximation is used to
calculate the addition energy for different number of electrons in a single quantum dot. For
a quantum dot with about 40 electrons, the charging energy is EC ≈ 20 meV and the level
spacing equals δ = 0.8 meV. The self-consistent spectrum obtained from the Hartree approx-
imation is different from the spectrum corresponding to the Thomas-Fermi approximation.
The spectrum, addition energy, and level spacing are (strongly) dependent on the number of
electrons in the dot.

Results from exact diagonalization of the two-electron Schrödinger equation show that
the singlet-triplet splitting in a single dot is much lower than expected. We use the harmonic
oscillator model to qualitatively show that the electrons, in a realistic potential for a nanotube,
will separate to save Coulomb energy, such that the shell filling model no longer applies. The
separation of the electrons is similar to the formation of a Wigner crystal.

Finally, we show that a device with five splitgates can be used to control a double dot. The
interdot coupling can be tuned such that it is much smaller than the singlet-triplet splitting,
even for the small singlet-triplet splitting observed. Experimentally, the transition from the
(1,1) state to the (0,2) state for the calculated gate voltages should occur in a time longer than
∼ 0.7 µs. The temperature limit corresponding to the simulation results equals ∼ 25 mK.
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Chapter 1

Introduction

1.1 The quantum computer

In 1947, the American computer engineer Howard Aiken said that just six electronic digital
computers would satisfy the computing needs of the United States. Of course, at this time
it was not know that scientific research, personal computers and the internet would fuel the
thirst for more and more computational power. According to Moore’s law, the scale of the
computer chips decreases by a factor two every 18 months, which would mean that in ten to
twenty years, the transistors on a microchip would be of the order of nanometers. From this
point of view it is unavoidable that at some point, a new type of computer will be introduced,
called the quantum computer.

A quantum computer is fundamentally different from the classical computer. A classical
computer stores information in a bit, which can have the value of either 0 or 1. In a quantum
computer, the information is stored in a two-level quantum system, called quantum bit, or
qubit. The large difference between the classical bit and the qubit is that the qubit uses the
quantum nature to represent data. This means that the qubit can have the value of 0 and 1 at
the same time, as well as any value in between. In other words, the qubit is in a superposition
of 0 and 1.

Quantum computations are done by manipulating this qubit. When two or more qubits
are coherently connected to each other, they together form one coherent quantum state. An
operation on one qubit is then actually an operation on all the qubits at the same time. This
results in an exponentially increase of computational power for a linear increase of the number
of qubits. Using this property, certain algorithms can be performed exponentially faster than
any conventional computer will ever can. One of such algorithms is Shor’s algorithm, used to
factorize prime numbers for cryptographical applications. Factorizing large prime numbers
on a classical computer requires a exponential time algorithm, while the algorithm used by a
quantum computer is polynomial one [1].

1.2 Spin Qubits

Any two level quantum system can in principle be used as a qubit. A few examples are:
the ground state and excited state of an atom, the spin up and down of an electron, or the
horizontal and vertical polarization of a photon. However, for the physical implementation of
quantum computation, the requirements defined by DiVincenzo must be met [2]:
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1. Introduction

• A scalable physical system with well characterized qubits

• The ability to initialize the state of the qubits to a simple fiducial state, such as |000...〉

• Long relevant decoherence times, much longer than the gate operation time

• A “universal” set of quantum gates

• A qubit-specific measurement capability

One of the most promising qubits is the spin of the electron, confined in a quantum dot [3].
The main problem of nanoscale devices is the electric noise causing decoherence of qubits.
Spin qubits however, are not effected by electric noise and are therefore good candidates for
future quantum computers.

For many years, devices have been fabricated where one or more electrons are confined
in all three dimensions by an electrostatic confinement potential in a GaAs two dimensional
electron gas (2DEG). The electrons are confined in a so called quantum dot, which can be
compared with an artificial atom, where the electron states are well defined. The number
of electrons as well as the states of single electrons can be controlled using external gates
and a magnetic field. It has been shown that, in this way, all needed quantum operations
can be performed on the spin qubit, such as the control of exchange interaction between two
electrons and rotation of a the spin of a single electron [4, 5].

However, one of the requirements of DiVincenzo is “long relevant decoherence times, much
longer than the gate operation”. In GaAs devices, the net spin of about 106 nuclei couples
to the spin of the electrons in the quantum dot, significantly decreasing the coherence time
of the qubit. [6, 7]. Also, the heavy Ga and As atoms result in strong spin orbit coupling,
causing the spins of the electrons to flip through non-magnetic interactions, such as phonons.
Finally, hyperfine interaction causes an effective non-uniform magnetic field in the sample
and therefore incoherent manipulation of the qubits, reducing the spin coherence time.

1.3 Carbon nanotubes

One solution to the problems of GaAs devices is using the spin of an electron in a quantum
dot in a carbon nanotube as a qubit. Carbon nanotubes were discovered by S. Iijima, in
1991 [8]. A carbon nanotube is a cylinder of carbon atoms with a diameter of typically 1 nm,
and a length of typically thousands times longer. Nanotubes are exceptionally strong and
have unique electrical properties. For example, the alignment of the carbon atoms forming
the cylinder determines whether a nanotube is metallic of semiconducting.

Apart from interesting physics, using carbon nanotubes has other advantages. First of all,
carbon atoms C12 have zero nuclear spin. Second, hyperfine interaction is small since carbon
is a light atom. Moreover, the electronic states of a nanotube are defined by p-orbitals, for
which the contact term of the hyperfine interaction vanishes. The light carbon atoms also
reduces the spin-orbit coupling pre-factor with almost two orders of magnitude, compared to
GaAs systems. Finally, fabricating nanotube devices can be done in a very clean way. For
regular growth techniques, a typical carbon nanotube consist for only 1.1% of C13 atoms,
making it a very clean system suitable for creating quantum dots and spin qubits. Because of
these arguments, the coherence time for a spin qubit in a nanotube is expected to be long [9].

All together, a carbon nanotube is a remarkably interesting and useful system, having
great potential in being the replacement of conventional semiconductor microelectronics.
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1.4. Motivation

1.4 Motivation

Although much work has already been realized in the research field of carbon nan-
otubes [10–20], there is yet much to be explored. Many features of future objectives are hard
to predict. The main reason for this is that nanoscale systems involve multi-scale physics.
Therefore, nanoscale systems can be very complex, and are almost always too complex to be
described with analytical equations. Numerical simulations are the solution to modeling real-
istic (carbon nanotube) devices, giving a better insight in, and understanding of, experimental
results. This is the main motivation for the work presented in this thesis.

A second motivation for the development of a simulation program for realistic devices is to
use it to support the design of new devices. Fabrication of nanodevices usually requires a good
recipe and much experience, but even then, fabricating the desired device takes many attempts
and thus a lot of time. Using the simulation program, full 3D self-consistent electrostatics
for different gate geometries can be easily calculated, and this can be combined with the
1D quantum mechanical processes at the nanotube. This makes numerical simulations very
useful to optimize the fabrication process by testing new gate geometries without having to
actually fabricate them.
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Chapter 2

Background theory on nanotubes
and quantum dots

The final goal of this master project is to calculate the electronic states in a double quan-
tum dot in realistic carbon nanotube devices. This chapter discusses the relevant theoretical
background which is needed to do these calculations. First the electronic properties of nan-
otubes are discussed. Then, the quantum dot, the double dot and the double dot experiment
are explained. Finally, the many body Hamiltonian is introduced.

Since this thesis is about a theoretical work, a chapter about fabrication of nanodevices
will be absent. However, we will briefly discuss some designs of devices which could be used
to make quantum dots in semiconducting nanotubes in subsection 2.2.2.

2.1 From 2D graphene to a 1D nanotube

A carbon nanotube is a small cylinder of the order of 1 nm, which can be thought of as
a rolled up sheet of graphene. Graphene, the 2D equivalent of graphite, consists of a single
layer of carbon atoms, ordered in a hexagonal lattice. The ground state of one carbon atom
is given by 1s22s22p1

x2p1
y2p

0
z. In the hexagonal lattice, the 2s2 electrons mix with two of the

p-orbitals such that three in-plane sp2 σ-bonds with a 120◦ angle are formed. The remaining
pz-orbital, perpendicular to the graphene sheet, forms delocalized π-bonds and π∗-antibonds
due to interactions with the neighboring pz-orbitals of other carbon-atoms. In contrast to
the energy levels of the π-electrons, the energy levels of the σ-bonds are far away from the
Fermi energy. Therefore, the π-electrons are mainly responsible for the transport properties
of graphene [21,22].

One of the most interesting aspects about nanotubes is that its electronic properties are
determined by way the graphene sheet is rolled up. The way the sheet is rolled can be
described by a chiral vector:

~C = n1 ~a1 + n2 ~a2 ≡ (n1, n2) (2.1)

with integers n1 and n2, and vectors ~a1 and ~a2 defined by

~a1 =

(√
3

2
;
1
2

)
a0 and ~a2 =

(√
3

2
;−1

2

)
a0 (2.2)

7 Delft University of Technology



2. Background theory on nanotubes and quantum dots

armchair 

zigzag

Figure 2.1: Graphene lattice with vectors ~a1 and ~a2. In the example drawn corresponds to a (5, 3)
nanotube as given on the right. Figure is adapted from [21].

with a0 =
√

3aCC = 2.46 Å. Every nanotube can be uniquely described by this chiral vector.
From the chiral vector the diameter follows via

d =
|~C|
π

=
a0

π

√
n2

1 + n2
2 + n1n2 (2.3)

and the angle between ~C and ~a1, the chiral angle θ, is given by

θ = arccos

(
~C · ~a1

|~C|| ~a1|

)
= arccos

(
2n1 + n2

2
√
n2

1 + n2
2 + n1n2

)
(2.4)

as illustrated in Fig. 2.1.
Because of the hexagonal symmetry of the honeycomb lattice, the chiral angle is 0 ≤

|θ| ≤ 30 ◦. The example given in Fig. 2.1 corresponds to a (5, 3) nanotube with a diameter
of 1.72 nm and chiral angle θ = 21.8 ◦. Two special cases exist: nanotubes with chiral angle
θ = 0 ◦, (n1, n1) nanotubes, are called armchair tubes, and (n1, 0) nanotubes are of the type
zigzag, with chiral angle θ = 30 ◦. Both cases are achiral tubes.

The translational vector ~T , perpendicular to ~C, reads

~T =
2n2 + n1

NR
~a1 −

2n1 + n2

NR
~a2 (2.5)

where NR is the greatest common divisor of the two numerators 2n2 + n1 and 2n1 + n2. The
vectors ~C and ~T describe the primitive cell of a (n1, n2) nanotube, from which a nanotube
can be constructed: a cylinder of height |~T | and circumference |~C|. The electronic properties
depend strongly on the primitive cell. The (5, 3) nanotube is, for example, a semi-conducting
nanotube, while a (6, 3) nanotube is metallic. In general, because of the symmetry, a nanotube
is metallic if n1−n2 is a multiple of 3. In the next section we will discuss this in more detail.

Kavli Institute of Nanoscience
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2.1. From 2D graphene to a 1D nanotube

Figure 2.2: Three types of nanotubes, zigzag (left), armchair (middle) and chiral (right). Figure is
adapted from [21].

2.1.1 Band structure

In Fig. 2.3, the unit cell of graphene is drawn on the hexagonal lattice of carbon atoms.
Using the vectors ~a1 and ~a2, all lattice sites can be mapped onto two inequivalent sites, labeled
A and B. This means that the unit cell contains only two atoms.

The reciprocal vectors of the unit cell are given by

~b1 =
(

1√
3

; 1
)

2π
a0

and ~b2 =
(

1√
3

;−1
)

2π
a0

(2.6)

Using the tight binding model, the 2D-dispersion relation of graphene can be found [23]:

E±(kx, ky) = ±γ0

√
1 + 4 cos

√
3kxa0

2
cos

kya0

2
+ 4 cos2

kya0

2
(2.7)

where γ0 is the tight binding nearest neighbor overlap energy, γ0 = 2.9 eV. The vector
~k = (kx, ky) is a set of available electronic momenta corresponding to the first Brillouin zone.

The valence and conduction band of graphene, the π-states, touch at the six corners of
the hexagonal Brillouin zone, called the K points. Since the conduction and valence band
cross at these points (charge neutrality points), the Fermi surface is defined by this set of K
points.

From the band structure of graphene, the band structure of a nanotube can be derived. For
a 1D nanotube, the wave function around the nanotube must satisfy the boundary condition

Ψ(~r + ~C) = ei
~k · ~CΨ(~r) = ei2πΨ(~r) = Ψ(~r) (2.8)

This boundary condition results in a set of allowed discrete values for k, which can be projected
onto the Brillouin zone of graphene (Fig. 2.4). In the direction along the nanotube, the wave
vectors are continuous (assuming an infinite long nanotube).
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2. Background theory on nanotubes and quantum dots

K

K‘

M

b1

b2xk

yk

A B

Unit cell

a2

a1

x

y

Γ

K K

K‘

K‘

Figure 2.3: Left: The hexagonal lattice of graphene with the basis vectors and unit cell. Right:
Brillouin zone with reciprocal basis vectors ~b1 and ~b2 and Γ, K,K’ and M points (symmetry directions).

From Eq.(2.8) the discrete set of allowed k-vectors follows:

k(n) =
2π

|~C|

(
n− n1 − n2 − 3N

3

)
n = 0,±1,±2, ... N = 0, 1, 2, ... (2.9)

Here, n is the subband index and N is an integer, such that

k(n) =
2π

|~C|

(
n− ν

3

)
n = 0,±1,±2, ... ν = 0,±1 (2.10)

with ν defined by ν = n1 − n2 − 3N .
In zero magnetic field, the k-vector intersects the Brillouin zone at a K-point, for ν = 0.

For ν = ±1, the closest k-vector to the K-points has an offset of ∆k = ±2π/3|~C| = ±2/3d.
The 1D dispersion relation for a nanotube is obtained by slicing the 2D dispersion relation

relation of graphene (Eq.(2.7)) at the given set of k-vectors, yielding [21]:

E±n(k‖) = ±β
√
k(n)2 + k2

‖ (2.11)

with β =
√

3a0γ0/2. Each energy band is two-fold degenerate in zero magnetic field, except
for the case where n = 0 and ν = 0. The degeneracy is called KK ′ degeneracy, or valley
degeneracy, with K and K ′ corresponding to a different valley. Each two-fold degenerate
energy band is again two-fold spin degenerate, resulting in four-fold degenerate energy bands.

The lowest conduction band and the highest valence band are given by +β|k(0)| and
−β|k(0)| respectively. For ν = 0 (n1+n2 is a multiple of 3) it follows that +β|k(0)| = −β|k(0)|.
For these cases, the dispersion relation is linearly proportional to k‖ and crosses at the K-
point. This means that there is no gap at E = EF , and thus the nanotube is metallic.

For semiconducting nanotubes, with ν = ±1, there is no integer n for which k(n) = 0
holds, so a gap opens at the Fermi level. Assuming a linear dispersion relation near the Fermi
energy, the energy of the gap is

Eg(k‖ = 0) = 2β|k(0)| = 2
√

3a0γ0

2
· 2
d
· 1
3

=
2a0γ0√

3d
(2.12)
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2.1. From 2D graphene to a 1D nanotube

K 

K‘ 

K K 

K‘ 

K‘ 
 

 

 

2/d

φ/φ0

Figure 2.4: Left: First Brillouin zone of graphene with the allowed states of a armchair nanotube
projected. A magnetic flux φ/φ0 parallel to the nanotube axis can be used to shift the allowed states.
Figure is adapted from [21].
Right: Energy diagram of the lowest subbands. a) for ν = 0, the k-vector crosses at the K-point, so
the subbands cross at E = EF , corresponding to a metallic nanotube. b) for ν = ±1, a gap opens and
the nanotube is semiconducting. Figure is adapted from [24].

The bandgap is independent of the chiral angle and is inversely proportional to the diameter
of the nanotube. However, for small nanotubes, electronic states close to the Fermi level
are strongly influenced by other effects such as strain, and atomic defects, which can shift
the k-vectors and thus break the KK ′ degeneracy [25]. For larger tubes, the electronic
states are determined by the states near the K and K ′-points and further effects can in
principle be neglected [22]. In this thesis, we will restrict ourselves to metallic nanotubes,
and semiconducting nanotubes of which the bandgap can be described with Eq.(2.12).

Apart from atomic defects, strain, and other (undesired) phenomena, the KK ′ degeneracy
can also be broken with a small magnetic field parallel to the nanotube (see Fig. 2.4). Including
the magnetic field, Eq.(2.9) becomes

k(n) =
2π

|~C|

(
n− ν

3
+

φ

φ0

)
n = 0,±1,±2, ... ν = 0,±1 (2.13)

where φ0 is the flux quantum φ0 = ch/|e|. The coupling of the magnetic field to the valleys
is an order of magnitude larger compared to the coupling to the spin of the electrons [20].
Therefore, in our calculations, we will assume that the KK ′ energies can be split, using a
very small parallel magnetic field.

2.1.2 Density of States

The electronic states of the nanotubes treated in this thesis are assumed to be defined
by the states near the K points and to be insensitive to atomic defects. For this assumption
we can use the effective mass approximation. Rewriting Eq.(2.11) and Eq.(2.12)results in an
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2. Background theory on nanotubes and quantum dots

equation for the effective mass m∗:

E±n(k‖) = ±
√

(m∗v2
F )2 + (~k|‖vF )2 (2.14)

m∗ =
Eg
2v2
F

=
√

3a0γ0

2dvF
(2.15)

where vF is the Fermi velocity,

vF =
√

3a0γ0

2~
(2.16)

Using a0 = 2.46 Å and γ0 = 2.9eV, the Fermi velocity equals vF = 9.4 · 105 ms−1. The
effective mass is proportional to the energy gap and thus inverse proportional to the diameter
of the nanotube. For the limit d→∞ (graphene limit), the effective mass goes to zero.
The slope of the dispersion relation near the Fermi level is given by

∣∣∣∣ dEdk||
∣∣∣∣ =
√

3a0γ0

2
k||√

k(n)2 + k2
||

= ~vF

√
E2 − (Eg/2)2

E
(2.17)

Here we only included the highest valence band and the lowest conduction band, ±k(0).
The density of states is given by

dN

dE
=
(
L

2π

)d ∮
FS

d~S

|∇kE|
= 2 · L

2π
· 4
|dE/dk|

(2.18)

The first factor 2 comes from the spin degeneracy and the factor 4 is a result of the plus and
minus k-branches and the two different valleys (K and K ′) [26]. Using the electron density
per unit length n = N/L and inserting Eq.(2.17) into Eq.(2.18) we get the density of states
for a nanotube:

dn

dE
= ~vF

E√
E2 − (Eg/2)2

=
8√

3πa0γ0

E√
E2 − (Eg/2)2

(2.19)

For metallic nanotubes Eg = 0, resulting in a constant density of states.

2.2 Quantum dots

A quantum dot is a man made nanostructure that can confine electrons (or holes) in all
spatial degrees of freedom. The size of a quantum dot is small, such that the energy spectrum
of the available states in the quantum dot is quantized. Via tunnel barriers, the quantum dot
can be coupled to a source and drain from (to) which electrons can tunnel to (from) the dot.
Gates can be used to change the energy in the dot through capacitive coupling, or to tune
the barriers between the dot and the source and drain. The quantum dot contains a finite
number of electrons (or holes), whereof the number can be controlled by external gates and
source and drain bias.

To understand a how a quantum dot works, we use the constant interaction (CI) model to
explain the electronic properties of a quantum dot. The CI model assumes that the Coulomb
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2.2. Quantum dots

VG

SOURCE DRAIN

e
DOT

IVSD

GATE

tnerru
C

N N+1 N+2N-1

ba

E
E

N-1 N N+1

∆µ/eα

Figure 2.5: Left: Scheme of Quantum dot. The dot is connected to the source and drain via tunnel
barriers and coupled capacitively to a gate. The electron tunnel from the source to the dot and from
the dot to the drain. The gate is used to electrostatically change the energy of the dot respectively to
the source and drain. Figure is adapted from [27]. Right: Current through the dot (ISD) as a function
of gate voltage. The number of electrons changes discretely. In between the peaks, there is no current
and thus the number of electrons is constant.

interactions of the electrons can be modeled by one quantity: the self capacitance of the dot.
The self capacitance CΣ is defined by the capacitance of the dot to everything else

CΣ = CS + CD + CG (2.20)

with CS the capacitance of the dot to the source, CD the capacitance to the drain and CG
the capacitance to the gate(s).

The second assumption of the model is that the level spacing in the dot is independent
of the number of electrons in the dot. Under these two assumptions, the energy of the dot
containing N electrons at zero bias (VSD = 0) yields

U(N) =
(e(N −N0) + CGVG)2

2CΣ
+
∑
n

En (2.21)

where N0 equals the number of electrons in the dot at zero VG, where VG is the gate voltage
applied. En are the single particle energy levels. The energy of the dot is minimal for a
particular number of electrons N, depending of the gate voltage applied. The electrochemical
potential is defined as the energy of the dot for N electrons minus the energy of the dot for
N − 1 electrons:

µdot(N) = U(N)− U(N − 1) =
(N − 1/2)e2 + eCGVG

CΣ
+ EN (2.22)

where EN is energy of the highest filled single electron state. From Eq.(2.22), the addition
energy follows:

∆µ(N) = µ(N + 1)− µ(N) =
e2

CΣ
+ ∆E (2.23)

with ∆E the energy level spacing EN − EN−1
1. The first term, e2/CΣ, is known as the

charging energy EC .

1For four-fold degenerate orbitals, ∆E = is only non-zero for every fourth electron
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2. Background theory on nanotubes and quantum dots

From the CI model, we can conclude that the energy in the dot scales linear with the
gate voltage VG applied. The shift in energy in the dot per voltage applied to the gate is
know as the α-factor α = CG/CΣ. When the gate voltage is increased, at some point it
becomes energetically more favorable for the system to let an extra electron tunnel into the
quantum dot. Consequently, the number of electrons changes discretely as a function of the
gate voltage, with period ∆µ/eα.

Since a quantum dot is small, the self-capacitance, or total capacitance, is also small,
and thus the charging energy EC is large (typically a few meV). To be able to control the
number of electrons as described above, there are two requirements that must be met. The
first requirement is that temperature is small enough such that the thermal energy is (much)
smaller than the charging energy EC :

e2/CΣ � kBT (2.24)

with kB the Boltzmann constant, kB = 1.38 · 10−23 JK−1 = 86.17 µeVK−1.
The second requirement is that the barriers are high enough to localize the electrons,

either in the leads, or in the quantum dot. From the Heisenberg uncertainty principle, we
can find a lower bound for the resistance of the barriers Rt. Using the discharging time of a
capacitor ∆t = RtCΣ and ∆E = EC , we get (RtCΣ)(e2/CΣ) ≥ h, so

Rt � h/e2 (2.25)

Rt must be (much) larger than the quantum resistance. When these two conditions are met,
the electrons are truly confined in the dot and the number of electrons can be changed by the
gate(s)2.

2.2.1 The double dot experiment

The spin of the electron is a good candidate to be used to perform the quantum operations
on. In order to be able to use the spin of the electron as a qubit, coherence time of the spin
must be sufficiently long. Although interaction with its surrounding is in principle small, it
will cause the spin to loose its “memory”. This “memory” time is known as coherence time.
Spin coherence time can be measured with a double dot, making use of the spin-blockade, or
Pauli-blockade, principle [28].

A double dot consists of two dots separated by a barrier, which is relatively small compared
to the barriers between the dots and the environment (leads). Two (or more) independent
gates are used to change the chemical potential in each dot separately. When the chemical
potentials of both dots are equal, µL = µR, the groundstate of two electrons is the singlet
S1,1 state, where the subindices corresponds to the number of electrons in the left and right
dot. Because of the separation of the electrons, the energy difference of the (1, 1) singlet and
triplet (S1,1 and T1,1) is very small. In the S0,2 and T0,2 state, the two electrons are in the
same dot. Here, the levelspacing is much larger compared to the (1,1) situation. In the T0,2

state, one of the electrons has to occupy a higher orbital, resulting in an energy difference
between T0,2 and S0,2. The experiment is based on the different energies of the singlet-triplet
splitting for the (1,1) and (0,2) case.

2The source and drain can also be used to control the number of electrons. Applying a source-drain bias
voltage, a current will flow if µSource > µdot(N + 1) or µdot(N) > µDrain. When µDrain − µSource < ∆µ(N),
current is blocked. This is know as Coulomb blockade.
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Figure 2.6: The steps of the spin relaxation measurement. First the two electrons are relaxed to
their groundstate S0,2 (a). Then the chemical potentials of the two dots are aligned and the electrons
will separate (b). Because of the delocalization of the electrons, the S1,1 and T1,1 states are degenerate
and can mix due to interactions with the environment (c). If, after some time τ the potential is tilted
back again (d), the electrons will occupy the S0,2 state when the spins have evolved coherently (f). If
incoherent processes have taken place, the electron will not tunnel back (e).

For nanotubes, because of the KK ′ degeneracy, electrons with the same spin can occupy
the same orbital and so this energy difference of the (0, 2) singlet and triplet is not present.
Therefore, we will use a small magnetic field to split the energies of the different valleys.
Without the KK ′ degeneracy, the experiment is the same as for the ’normal’ situation.

Following Petta [5], measuring the spin coherence time works as follows:
First, the potential is tilted such that two electrons occupy the right dot and the left dot
is empty. After waiting sufficient time, the two-electron state is relaxed to the groundstate
S0,2 (Fig. 2.6.a). Then, the chemical potentials µL and µR are aligned such that one electron
will tunnel to the left dot and the two electrons occupy the S1,1 state (Fig. 2.6.b). Since

T02
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S11

T11

E

∆µ

T02

S02

T11

S11

a

b,c
f

e

d

2 |t12|

Figure 2.7: Energy diagram corresponding to the double dot spin blockade experiment. The ver-
tical axis corresponds to the energy and the horizontal axis corresponds to gate voltage. The labels
a,b,c,d,e,f correspond to the labels in Fig. (2.6). t12 is the inter-dot coupling. For vanishing coupling,
the levels cross (dashed lines). For non-zero coupling, an anti-crossing occurs. The two anti-crossings
of the singlet and triplet, corresponding to the transition from S0,2 to S1,1 and T0,2 to T1,1, occur at
different energies. Due to different spatial configurations, the tunnel coupling at the two anti-crossings
can be different. Because the transitions occur at different positions in gate space, the state of the two
electrons can be resolved.
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2. Background theory on nanotubes and quantum dots

the S1,1 and T1,1 states are degenerate in energy they can mix, due to the interaction with
the environment. After some time τ , the potential is tilted back resulting in the situation as
illustrated in Fig. 2.6.d. When the two-electron spin state has evolved incoherently during
the time τ , the two-electron state is no longer in the S1,1 state and the electron cannot tunnel
back into the right dot (Fig. 2.6.e). However, if the spin state is still coherent, the S0,2 state
is accessible and the electron tunnels back (Fig. 2.6.f). The change in charge distribution can
be detected using a single electron transistor (SET) [29]. In this way, it is thus possible to
infer the information about the spin of an electron by looking at the charge distribution. By
varying the waiting time τ the spin coherence time can be resolved.

2.2.2 Quantum dots in carbon nanotubes

For reasons mentioned earlier, the spin of an electron in a carbon nanotube quantum dot
is a good candidate for a qubit. One way to create a quantum dot in a carbon nanotube is
to simply put two metal electrodes on top of the nanotube: the source and the drain. At
the interface of the metal and the semiconducting nanotube a tunnel barrier is formed by
the Schottky barrier. The Fermi level of the metal usually does not lie exactly in the middle
of the bandgap of the nanotube. Therefore, the formed Schottky barriers are different for
electrons than for holes [30]. Usually, hole conductance is better than electron conductance.

Since the finite size of the nanotube between the source and drain quantizes the energy
levels, a quantum dot is created in between the barriers. An external gate can be used to
tune the energy levels in the quantum dot as described in the previous subsection.

When the external gate voltage is zero, the Fermi energy of the semiconducting nanotube
lies inside the bandgap and transport through the nanotube is blocked. By changing the

p i n pinn n ii
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Figure 2.8: Schematic representation of the difference between a device with topgates (TG),(a), and
a device with splitgates (b). The arrows represent the field lines from the gates. In a), the barriers
are formed underneath the topgates by locally depleting the nanotube. In b), the splitgates are used
to electrostatically dope the nanotube with holes (electrons) and the backgate to dope the nanotube
with electrons (holes). The barriers are formed at the interfaces of the differently doped regions, which
are known as p-n junctions.
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Figure 2.9: Five splitgates are used to make a tunable double dot. Left: The outer two splitgates are
used to p-dope the nanotube. The other three splitgates make an n-type dot, where the middle split
gate is used to split the dot into two dots. The backgate is not used. Right: 3D view of a nanotube
device with five splitgates. The nanotube is suspended and an SET is used as a charge detector.

gate voltage, it is possible to tune the energy such that the Fermi energy gets inside the
valence band, resulting in hole-transport, or inside the conduction band, resulting in electron-
transport [10]. It is thus possible to electrostatically dope the nanotube with holes or with
electrons (depending on the sign of the gate voltage). The barriers of such a device are
formed at the interface of the metal source (and drain) and the semiconducting nanotube.
The number of electrons is controlled by a (back) gate. In this way it is, however, not
possible to control the width of the barriers. For example in the double dot experiment,
tunable barriers are required.

One way to obtain tunable barriers is the use of topgates [13,31–34]. Topgates are placed
on top of the nanotube, separated by a layer of a dielectric material. They are positioned
relatively close to the nanotube and can therefore be used to form barriers by locally depleting
the nanotube. In a topgate device, the two topgates are used to create barriers, and the
backgate to change the energy in the dot, see Fig. 2.8. In this way a quantum dot with
controllable barriers can be realized.

Another possibility is to use gates positioned underneath the nanotube, called splitgates.
In this device the nanotube is locally doped with holes (p-type) by the splitgates, and with
electrons (n-type) by the backgate, resulting in a p-n-p junction. At the interface of the
differently doped segments, the Fermi level lies inside the bandgap and the barriers are formed
(see Fig.
2.8). It has already been shown that p-n junctions can be realized with a nearly ideal diode
behavior, using two splitgates (without a backgate), [35]. The polarity of the p-n junction
can be switched to n-p junction, or the device can be used as a p- or n-channel field effect
transistor (FET). The biggest advantage is that this setup allows suspending of the nanotube,
avoiding effects of dielectric polarization and trapped charges [36]. Very recent experiments
have demonstrated that this technique can be used to make a very clean single electron
tunable quantum dot.

In theory, splitgates could also be used to make a double dot (see Fig.
2.9). Aligning five split gates next to each other, the outer two splitgates can be used to
p-dope the nanotube. The next two splitgates (towards the middle) are used to n-dope the
nanotube, such that p-n junctions are formed. Finally, the middle splitgate is used to locally
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2. Background theory on nanotubes and quantum dots

deplete the nanotube, splitting the dot into two dots. With this setup, we expect that a
double dot with tunable barriers can be realized.

2.3 Many body Hamiltonian

The electronic states of the electrons in a quantum dot are described with the many
body wavefunction. Analogue to Newton’s second law in classical mechanics, the Schrödinger
equation describes the space- and time-dependence of a quantum mechanical system.

Ĥ|Ψ〉 = E|Ψ〉 (2.26)

The solutions of Scrödingers equations are the many body wave functions Ψ which minimize
the expectation value of the many body Hamiltonian Ĥ, corresponding to the total energy
E of the system. In zero magnetic field, the (static) electronic states of electrons in a fixed
external potential are described by the many body Hamiltonian:

Ĥ =
N∑
i=1

ĥ(i) +
1
2

N∑
i=1

N∑
j=1,j 6=i

ĝ(i, j) (2.27)

where ĥ(i) is the one-electron operator consisting of the kinetic energy operator and the
external potential energy Uext

ĥ(i) = − ~2

2m
∇2
i + Uext (2.28)

and ĝ(i, j) is the electron-repulsion operator, describing the Coulomb interaction:

ĝ(i, j) =
e2

rij
=

e2

|ri − rj |
(2.29)

The many body wavefunction Ψ consist of a spatial part and a spin part. In zero magnetic
field, the many body Hamiltonian only operates on the spatial degrees of freedom of the
wavefunction and not on the spin degrees of freedom.

We can write the total wavefunction as a product of a spatial part and a spin part, with
the Hamiltonian only acting on the spatial part.

Ψtotal = Φspatial ⊗ σspin (2.30)

The spatial part of the wavefunction is found by solving the eigenvalue problem for the given
spinless Hamiltonian. The spin part of the wavefunction corresponds to the eigenfunctions of
the Pauli matrices. This statement holds for any number of electrons.

In the next section we will solve the many body Schrödinger equation. Doing so for a large
number of electrons results in a partial differential equation with a large number of dimensions,
requiring approximations to be made. For a few electrons however, the Schrödinger equation
is exactly solvable. We will therefore briefly discuss the case of two electrons here.

The spin states for two electrons are well known. For the spin part of the two-electron
wavefunctions, there are four possible spin eigenstates. The spin singlet, S0, has quantum
numbers s = 0, ms = 0 and is given by

|σsinglet〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (2.31)
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2.3. Many body Hamiltonian

The spin triplets, T+, T 0 and T−, with s = 1 and ms = +1, 0,−1 respectively, are given by

|σtriplet〉 =


| ↑↑〉

1√
2
(| ↑↓〉+ | ↓↑〉)

| ↓↓〉
(2.32)

For the spin singlet it holds that interchanging the two electrons results in the spin state
−|σsinglet〉, thus it is anti-symmetric. The spin triplet is symmetric. The Pauli principle states
that, for fermions, the total wavefunction must be anti-symmetric under particle exchange.
Therefore, the spin singlet corresponds to a symmetric spatial wavefunction, while the spin
triplet corresponds to an anti-symmetric wavefunction. In general, the total wavefunctions
(spin plus spatial part), are referred to as the singlet and triplet states. For three or more
electrons, the spin states get significantly more complicated. See for example [37].

The anti-symmetrization requirement of the total wavefunction leads to a difference in
energy, know as the exchange correlation energy. In the shell filling model, the singlet triplet
splitting is given by the level spacing minus this exchange correlation energy. The energy
difference can be explained as exchange interaction, which acts like a repulsive force for the
anti-symmetric spatial wavefunction, and like an attractive force on the symmetric spatial
wavefunction [38]. The double dot experiment as discussed in subsection 2.2.1 is based on
controlling this exchange correlation energy.
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Chapter 3

Structure of the simulation program

In this chapter we describe the different cornerstones of the simulation program we devel-
oped. The goal of the program is to be able to calculate the electronic states of electrons in a
quantum dot in a semiconducting nanotube for a given gate geometry and gate voltages. We
are especially interested in how we can control these different electronic states. In order to
be able to calculate this, we need an approach which covers the multi-scale physics, namely
the (macroscopic) electrostatics of the device, as well as the quantum mechanical behavior of
the electrons in a quantum dot in the nanotube. We used the method from reference [39] as
a guideline.

3.1 Classical electrostatics

3.1.1 The Poisson equation

In electrostatics, the electric potential can be calculated by solving the Poisson equation.
The Poisson equation is given by

∇2φ(x, y, z) = −ρ(x, y, z)
εrε0

(3.1)

where φ is the electrostatic potential, ρ is the charge distribution, ε0 is the permittivity of
vacuum and εr is the relative dielectric constant. For simple problems, such as a parallel
plate capacitor, this can be done analytically. However, the devices we want to model of-
ten have complex geometries, for which simple analytical equations are no longer sufficient.
Fortunately, there are many ways to solve Poisson equation numerically.

To numerically solve the Poisson equation, we first need to project the Poisson equation
onto a discrete grid. This results in a set of finite difference equations. Solving these finite
difference equations can be done either directly, based on matrix multiplications, or iteratively,
based on relaxation of the electrostatic potential. Iterative methods require much less memory
than direct methods, which is why we will use an iterative method. Iterative methods start
with an initial guess of the electrostatic potential and then iterate through the grid, replacing
the potential with a new value depending on the values of the potential at neighboring points.
After sufficient iterations, the solution will be converged, such that the potential satisfies
Eq.(3.1).

The simplest relaxation method is the Jacobi method. For a harmonic function holds
that its value at a point equals the average of the function around a circle centered about
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that point. The Jacobi method takes the neighboring points on a square grid and takes the
average of those points as the new value for the point under consideration. For a uniform 1D
grid with spacing h, the new value of the potential at point i reads

φn+1
i =

1
2h2

(φni−1 + φni+1) (3.2)

Although iterative methods have the advantage of low memory usage, simple relaxation,
such as the Jacobi method, is generally a slow process. Fortunately, several well known
methods are available to speed up the relaxation. The Gauss-Seidel method, also known as
the method of successive displacements, is an improvement on the Jacobi method. It takes
already updated points as input, if available, instead of pre-determined values (i.e. from the
previous iteration). For a uniform 1D grid, the Gauss- Seidel equation for the new value of
φi reads

φn+1
i =

1
2h2

(φn+1
i−1 + φni+1) (3.3)

The difference with Eq.(3.2) is the replacement of n by n + 1 for φi−1. It means that, in
iteration n+1, the electrostatic potential at position i−1, which has already been calculated,
is used to calculate the new value at point i. In this way the relaxation of the potential is
speeded up significantly.

The Gauss-Seidel method improves the speed of the relaxation, but there is yet another
method which drastically speeds up the relaxation. Relaxation of the potential can be thought
of as information-waves propagating through the system. Since the relaxation depends on
neighboring points, errors in short wavelengths are quickly damped. It is, however, the long
wavelength fluctuation that is responsible for the slow relaxation. To speed up the diffusion
of the information through the system, we use an over-relaxation-method, called successive
over-relaxation (SOR). To calculate the new value for the electrostatic potential at a given
point, SOR takes the weighted sum of the old and the new solution

φ̃n+1
i = φni + ω[φn+1

i − φni ] (3.4)

which is, for linear systems, guaranteed to converge for 0 < ω < 2. For ω < 1 the system is
underrelaxed, meaning that the relaxation is damped. For 1 < ω < 2 the system is overrelaxed
and for ω = 1, the problem reduces to the Gauss-Seidel method. The optimal value of ω,
corresponding to the fastest convergence, depends on the size of the system. For a square
uniformly spaced grid with N ×N points, the optimal value of ω is given by

ω =
2

1 + sin(π/N)
≈ 2

1 + π/N
(3.5)

Using the SOR method, Poisson’s equation can be solved in a fast way using relatively
little memory. However, the usage of memory scales linearly with the number of data points,
and therefore the number of data points is limited. The diameter of a nanotube and the
typical size of a gate can easily differ two or even three orders of magnitude. Using a uniform
grid that is dense enough to accurately calculate the electrostatics of the nanotube in such
a device would require a enormous amount of data points. Moreover, we are usually only
interested in the electrostatics of specific parts of the device. For these reasons we use a non-
uniform grid, which can be very dense around areas we are interested in. For less interesting
parts (such as far away from the nanotube, where the electric field lines are zero), large grids
pacing can be used.

Kavli Institute of Nanoscience
Quantum Transport Group

22



3.2. Modeling quantum dots with many electrons

Non-uniform gridding allows us to load the 3D geometry of relatively large devices into
the simulation program, with locally high resolution, using only about 107 grid points. For
every grid point the type of material is defined, as well as the dielectric constant and the fixed
charge. The types of materials can in this case be either an insulator with a fixed charge,
or a metal, which corresponds to Dirichlet boundary conditions. For the (metal) gates, the
voltages can be set to a specific value.

With the given input described above, we can, in principle, solve the Poisson equation
for any given gate geometry. The output contains the potential and electric field lines in all
three dimensions, as well as the induced charge on every surface. Since the system is linear,
the capacitance between two surfaces can be easily calculated by dividing the induced charge
on a surface, due to the voltage of the other surface, divided by this voltage. Written in a
more compact form:

CAB =
QA

φB
(3.6)

with CAB the capacitance between surface A and surface B. QA is the total charge at surface
A, induced by the voltage at surface B, φB. The induced charge Q is calculated using Gauss’s
law

Φs =
∫
s

~Ed~s =
∑

S q

εrε0
=

Q

εrε0
(3.7)

where Φs is the total flux through a closed surface S, ~E is the electric field vector, ~s is the
surface vector, and

∑
S q is the sum of the charge inside the closed surface S. For a grid point

in rectangular simulation space, the induced charge simply equals the sum of the electric field
lines through a rectangular surface around a grid point. The total net charge in the system
is zero.

The Poisson solver as described above is very suitable for calculating capacitances between
metal surfaces in a realistic device. The effect of different gate geometries can be studied as
well as the use of different types of dielectric materials.

3.2 Modeling quantum dots with many electrons

3.2.1 Thomas-Fermi approximation

The Poisson equation as given in the previous section only covers linear systems, i.e.
metals and insulators. The final goal of our simulation is to calculate the effect of the change
of a gate voltage to the electronic states in a quantum dot in a semiconducting nanotube.
This is not possible using the Poisson solver as described until now. For a semiconductor,
the charge distribution is a function of the potential, which itself is a function of the charge
distribution. Therefore, the Poisson equation becomes non-linear.

∇2φ(x, y, z) = −ρ(x, y, z, φ(x, y, z))
εrε0

(3.8)

Using a simple Taylor expansion, also the non-linear Poisson equation can be solved iteratively.
However, the non-linear Poisson equation with a given charge density functional is no longer
guaranteed to converge. For this reason we introduce a new parameter ωNL which is less or
equal to unity. In this way we underrelax the potential for those points where the non-linear
Poisson equation applies in the same way as we overrelax the linear part [40].
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Charge density as a function of potenial
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Figure 3.1: Charge density functional of a semiconducting nanotube with a bandgap. Inside the
bandgap the density of states is zero and hence there is no charge. The dashed line corresponds to a
metallic nanotube.

To be able to solve Eq.(3.8), we need to know what the relation is between φ and ρ. If
we assume that all quantum numbers are large enough to be treated as a continuum, we
use the Thomas-Fermi approximation. In the many electron regime, we can use a charge
density functional for the nanotube as an approximation for the ground state electron (or
hole) density. The Thomas-Fermi approximation starts with the dispersion relation which we
derived in subsection 2.1.1. Rewriting the density of states given by Eq.(2.19) we obtain the
charge density functional ρ(φ).

dρ
dφ = edn

1
e
dE

|ρ(φ)| = 8e2√
3πa0γ0

√
φ2 − (Eg/2e)2

(3.9)

where Eg is the energy of the gap of the nanotube. Eq.(3.9) describes how the charge density
in the nanotube will vary as a function of the local potential. For Eg = 0 the functional
becomes linear, corresponding to a metallic nanotube. The functional is plotted in Fig. 3.1.
It shows that by applying an external voltage, the nanotube can be electrostatically doped
with electrons (φ > Eg/2e) or with holes (φ < −Eg/2e). For zero external voltage, the
nanotube is depleted.

As stated before, the Thomas-Fermi approximation assumes that all quantum numbers
are large. For the leads of the nanotube, where the Fermi-level is high up (down) in the
conduction (valence) band, the Thomas-Fermi approximation holds. Using the Thomas-Fermi
approximation to calculate the ground state of the electrons in the dot only makes sense when
the number of electrons in the dot is large. For calculating the level splitting for the electrons
in the dot however, the Thomas-Fermi approximation is not sufficient.

3.2.2 Hartree approximation

In the Hartree approximation, single electrons are visualized as moving in an effective
potential. This allows us to use a single electron Hamiltonian, instead of using the many
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3.2. Modeling quantum dots with many electrons

body Hamiltonian (Eq.2.27). The Schrödinger equation for one electron in the quantum dot
in the Hartree approximation is given by[

− ~2

2m∗
∇2 + Uext(r) + e

∫
ρ(r′)
|r − r′|

dr′
]
ψi = εiψi (3.10)

where we use the effective mass m∗ given by Eq.(2.14). Uext is the external potential (energy),
defined by U = −|e| ·φ. In our case the external potential equals the potential due to the
charges on the gates (including the image charges of the charges in the dot). The last term
between the brackets represents the potential (energy) due to the average charge density
distribution ρ(r′). Eq.(3.10) has the form of the Schrödinger equation for non-interacting
electrons moving in an external effective potential. The eigenfunctions of Eq.(3.10) are the
single electron wavefunctions ψi.

The square of the modulus of the wavefunctions can be interpreted as smeared out elec-
trons. Using the independent electron model the average charge distribution then reads

ρi(r) = −|e| · |ψi(r)|2 (3.11)

ρtot(r) = −|e|
N∑
i=1

|ψi(r)|2 (3.12)

Combining Eq.(3.10) and Eq.(3.11) yields the final equations, called the Hartree equations:

− ~2

2m∗
∇2ψi(r) + Uext(r)ψi(r) +

e2
∑
j

∫
|ψj(r)|2

1
|r − r′|

dr′

ψi(r) (3.13)

The wavefunctions ψi depend on the wavefunctions themselves. This means that the Hartree
equations are non-linear and therefore they must be solved in an iterative way.

Just like the Thomas-Fermi approximation, the Hartree approximation is a density func-
tional theory since the solution of the Hartree equations depend on a the local charge distribu-
tion. However, in contrast to the Thomas-Fermi approximation, it is based on the orbitals of
single electrons. From the single electron wavefunctions, the charge distribution is calculated.
From the charge distribution, the effective potential is calculated, for which Eq.3.13 is solved.
corresponding to a new set of single electron wavefunctions. The new set of single electron
wavefunctions results in a new charge distribution and effective potential, and in this way
the procedure is repeated until the solution converges. Using the simulation program, the
procedure goes as follows:

First, the electrostatic potential is calculated for a given device with given gate voltages.
For this calculation we use the Poisson solver with the Thomas-Fermi approximation for the
total nanotube. The gate voltages should be chosen such that a quantum dot is formed in
the nanotube with well defined barriers between the dot and the leads.

The calculated potential along the nanotube is taken as the initial guess for the effective
potential for the electrons in the dot. Since the nanotube is a 1D system, also the effective
potential is a 1D potential and so Eq.(3.13) becomes a one dimensional differential equation.

After the initial guess of the effective potential is calculated, we no longer use the Thomas-
Fermi approximation for the dot, but we will still use it for the leads (see Fig. 3.2). For the
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Figure 3.2: Scheme of the method used to calculate Hartree approximation for the electrons in
the quantum dot. First, the potential along the nanotube is calculated using the Thomas-Fermi
approximation for the total nanotube (a). Then, for the part with the dot the Hartree approximation
is used (b). The charge distribution is calculated from the wavefunctions of the single electrons
instead of using the Thomas-Fermi density functional. From the charge distribution, the new effective
potential is calculated, resulting in a set of wavefunctions. This procedure is repeated until the solution
is converged (c).

dot, we will use the Hartree approximation. The tricky point of using the Hartree approx-
imation together with the Thomas-Fermi approximation is what to do with the boundary
conditions. We must define the point along the nanotube where we stop using the Thomas-
Fermi approximation, and start with the Hartree approximation, i.e. the point where the lead
ends and the dot starts. At this point, we use the boundary condition ψi(xb) = 0, where xb is
the boundary point for the Thomas-Fermi and Hartree approximation. The most convenient
choice for the boundary point is the middle of the barrier, since here also ρTF (xb) = 0.

The quantum dot in the nanotube is formed by electrostatically doping the nanotube
with external gates, so we do not know in advance where exactly the barriers will be. This
is the reason why we use the Thomas-Fermi approximation to calculate the initial guess. For
systems where the leads and dot are well defined, the position of the barriers are known in
advance and this first step is not needed.

As an initial guess for the wavefunctions, we take the wavefunctions of the Thomas-
Fermi potential. We could however, take any other initial guess (for example ψi = 0). The
wavefunctions are calculated by applying the Numerov integration method [41], which is very
efficient and simple to implement for a 1D problem. From the wavefunctions, the charge
distribution is calculated using Eq.(3.12). We can either choose the number of electrons
(N), or fill the dot up to the Fermi level. This charge distribution replaces the charge
distribution obtained from the Thomas-Fermi approximation. With the new charge, the
electrostatic potential is calculated again resulting in a new effective potential. From this
effective potential, the new wavefunctions are calculated, which give a new charge distribution,
and so on. When the solution converges the self consistent Hartree solution for the dot is
found.

3.3 Exact diagonalization for two electrons

Density functional theory (DFT) is based on the density of a uniform, non-interacting
degenerate electron gas in a constant potential [42]. For a large number of electrons, this is
a good approximation. However, self interaction of the electron which is included, results in
large errors when we use the approximation for a small number of electrons. In this section
we will discuss a way to correctly solve the many body Hamiltonian for two electrons.
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3.3. Exact diagonalization for two electrons

3.3.1 Two-electron Schrödinger equation

For the double dot experiment, we need only two electrons for which DFT is not a good
approximation. Fortunately, it is possible to calculate the electronic states for two electrons
in a nanotube exactly. Because electrons in a nanotube are strongly confined in the radial
direction, a nanotube can be treated as a one dimensional system. The Schrödinger equation,
using the Hamiltonian from Eq.(2.27), for two electrons in a one dimensional system reads

ĤΨ(x1, x2) =
[
− ~2

2m∗
d2

dx2
1

− ~2

2m∗
d2

dx2
2

+ Uext(x1) + Uext(x2) +
e2

|x1 − x2|

]
Ψ(x1, x2) (3.14)

where x1 refers to the spatial degree of freedom of electron 1 and x2 to that of electron 2.
The last term between the brackets is the Coulomb interaction term, which models the inter-
actions and correlations between the two dot-electrons (this term is also known as ĝ12). For
a one dimensional system with two electrons, the Schrödinger equation is a two dimensional
differential equation with variables x1 and x2. Such a differential equation is exactly solvable.

3.3.2 Visualizing the two-electron problem

Solving the eigenvalue problem for two electrons in 1D space is very similar to the case
with one electron in 2D space. In both cases a two dimensional differential equation is solved
to obtain two dimensional wavefunctions. There are however, some important differences.

The first difference regards the potential seen by the electron(s). In Eq.(3.14) there is an
external potential for each electron. By defining

Ūext(x1, x2) = Uext(x1) + Uext(x2) (3.15)

we get an effective 2D potential for the two electrons. For both electrons, the external
potential Uext is, of course, equal. Therefore the given effective external potential Ūext(x1, x2)
is restricted by symmetry conditions, which is not the case for one electron in 2D space.

The Coulomb interaction term can also be thought of as an effective 2D potential seen by
the two electrons. Coulomb interaction is dependent on the distance between electrons. For
two electrons in free space it yields

VC(x1, x2) = VC(|x1 − x2|) =
e2

4πεrε0|x1 − x2|
(3.16)

This 2D potential represents the potential at point x1, due to a charge at point x2. The
2D Coulomb ’potential’ is maximal along the line x1 = x2 in the two dimensional parameter
space, since here the repulsion is the highest.

Putting everything together, the total effective 2D potential for the two electrons in the
1D nanotube becomes

U∗ext(x1, x2) = Uext(x1) + Uext(x2) + VC(x1, x2) (3.17)

and the eigenvalue problem is equivalent to the case with one electron in 2D space, with an
external potential U∗ext. An example of the effective 2D external potential U∗ext is illustrated
in Fig. 3.3.

The second difference from the two dimensional single electron case, is the interpretation
of the wavefunctions. The two electrons see an effective two dimensional potential, for which
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Figure 3.3: Visualization of an example of the 2D potential for the two-electron wavefunction:
U∗

ext(x1, x2) = Uext(x1) + Uext(x2) + VC(x1, x2). For this example, the 1D external potential is an
harmonic oscillator potential. The Coulomb interaction is maximum at the line x1 = x2. For VC = 0
the problem reduces to that of two independent electrons, which is exactly equivalent to the eigenvalue
problem for one electron in 2D potential.

the corresponding wavefunctions are found. For the 2D single electron case, the modulus
square of the wavefunction represents the probability of finding the electron at a given space
interval in the two dimensional space. For the one dimensional, two electron case, this is
different.

The modulus squared of the two-electron wavefunction represents the conditional prob-
ability of finding electron one at a x1, given that electron two is at position x2 (x1 and x2

correspond to a one dimensional space interval). Since the electrons are identical particles,
interchanging x1 and x2 gives the same result.

|Φ(x1, x2)|2 = P (x1|x2) = P (x2|x1) (3.18)

The charge distribution for electron one is found by integrating the modulus squared of the
wavefunction over the spatial degree of freedom of electron two. Again, since the electrons
are identical particles, integrating over x1 results in the same charge distribution as integrat-
ing over x2. The total charge density is obtained by adding the two single electron charge
distributions.

ρ1(x1) = e

∫
|Φ(x1, x2)|2dx2

ρ2(x2) = e

∫
|Φ(x1, x2)|2dx1 = ρ1(x2)

(3.19)

ρtot(x) = ρ1(x) + ρ2(x) (3.20)

where x is the spatial coordinate at the 1D nanotube.
As discussed before, the total wavefunction must be anti-symmetric under particle ex-

change. Therefore, the spin singlet corresponds to a symmetric spatial wavefunction and
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Figure 3.4: Spatial part of the two-electron wavefunction Φ(x1, x2) for a 1D system. In a) (3D
view) and b) (top view) the spatial wavefunction with the lowest energy is plotted. The wavefunction
is symmetric about the line x1 = x2 and corresponds to the spin singlet. The spatial wavefunction
corresponding to the spin triplet has a node at x1 = x2 and is anti-symmetric (c,d). Integrating the
square modulus of the wavefunction over one of the two degrees of freedom results in the charge density
along the nanotube.

the triplet to a anti-symmetric spatial wavefunction. Symmetry under particle exchange in
this context can be visualized by the mirror symmetry of the wavefunctions about the line
x1 = x2, see Fig. 3.4.

For the double dot case, there are four states we are interested in. The S0,2 and T0,2

are the singlet and triplet states, corresponding to the case with two electrons in one dot.
These states are expected to look similar to the singlet and triplet states given in Fig. 3.4.
The singlet and triplet states corresponding to the case with one electron in each dot are the
S1,1 and T1,1 states. When the electrons are in either one of these states, they are separated
spatially. They are however, strongly correlated and therefore should be thought of as a
two-electron state, coherently distributed over both dots.

3.3.3 Calculating the potentials

The two-electron wavefunction of the electrons in the dot depends on the external potential
Uext, which again depends on the electrons in the dot. In the Hartree approximation we solved
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this in an iterative way, where we calculated the new effective potential with the charge
distribution obtained from the wavefunctions. However, we included the electric field from
the electrons in the dot themselves when we calculated the new potential.

The external potential Uext from Eq.(3.14) represents the potential due to all electrons
outside the dot, including the image charges of the dot. However, in contrast to the Hartree
approximation, the interaction and correlation of the two electrons in the dot is modeled with
the Coulomb term VC(x1, x2). For this reason we need to calculate the potential due to all
charges in the system but the electrons in the dot. We do this in the following way:

First, the initial guess for the charge distribution in the dot is calculated. The most
convenient way to do this is to take the charge distribution from the Thomas-Fermi solution
for the nanotube. The system then contains the amount of image charges equal to the number
of electrons in the dot. The potential at the nanotube however, includes the electric field from
the electrons in the dot which must be excluded. To calculate the correct potential, all charges
in the system are fixed, and the charge in the dot is removed (ρdot(φ) = 0). Then the 3D
Poisson equation is solved again resulting in a potential along the nanotube corresponding to
the external potential Uext. This potential is called the bare potential.

After the bare potential is calculated, the Schrödinger equation is solved resulting in a
new two-electron wavefunction with a new charge distribution. This charge distribution is
plugged into the simulation program and the 3D electrostatics are again calculated. Next
all charges are kept fixed, the charge in the dot is removed, and the new bare potential is
calculated. The change of the charge distribution in the dot results in a change of the charge
distribution at the gates and leads, which again results in a new bare potential. In this way,
the Schrödinger equation is solved iteratively.

In the iterative Schrödinger solving process, the redistribution of the charge in the dot
results in a redistribution of the image charges, which again results in a change in the external
potential. Since the image charges are relatively far away (at the gates and leads), we neglect
the change in the external potential because of the redistribution of the electrons in the dot 1.
By neglecting the change in the external potential, the iterative process is reduced such that
only two 3D electrostatic calculations are needed. One to obtain the initial guess, and one to
get the exact number of image charges (in contrary to the way the charge is distributed, the
exact amount of image charges is relevant).

The interaction of the electrons in the dot with all charges outside the dot is modeled
with the mean field approximation, captured in Uext. What is crucial in this approach is that
self interaction of the electrons in the dot is excluded. The interaction and correlation of the
two electrons in the dot can now be modeled with the Coulomb interaction term.

The Coulomb interaction term as given in Eq.(3.16) diverges for a 1D system for x1 = x2.
Although the nanotube is a 1D system, it does have a finite size in the radial direction. For
this reason we can add a form factor µ that softens the Coulomb potential [43]. Using the
form factor, the analytical expression for the Coulomb interaction becomes:

VC(x1, x2) =
e2

4πεrε0
√

(x1 − x2)2 + µ2
(3.21)

One approximation is to take µ to be equal to the radius of the nanotube. However,
the two dimensional Coulomb potential represents the potential at point x1, due to a charge

1In DFT, this approximation can not be applied since the external (effective) potential depends directly on
the electrons in the dot.

Kavli Institute of Nanoscience
Quantum Transport Group

30



3.3. Exact diagonalization for two electrons

N

TF

~N electronsholes holes

a)

b) TF TF

holes holesN electrons

Schrödinger

c)
3D Poisson 3D Poisson Schrödinger

Figure 3.5: Scheme of the iterations needed for solving the two electron Scrödinger equation. a: First
a Thomas-Fermi approximation for the total nanotube is used. b: Then, the Schrödinger equation is
used for the dot and the Thomas-Fermi approximation is used for the leads only. c: At every iteration,
the 3D electrostatics are calculated twice. Once to calculate the new charge distribution at the gates
and leads, and once in the bare potential. Then the two-electron wavefunction is calculated resulting
in a new charge distribution of the two electrons in the dot, which results in a new charge distribution
at the gates and leads and so on.

at point x2 and it can therefore also be calculated using the Poisson solver. To do this,
an amount of charge is placed on position x1 at the nanotube and the potential along the
nanotube due to this charge is calculated, by solving the 3D Poisson equation. This is done
for every point along the nanotube, resulting in a 2D screened Coulomb interaction potential.
In this way, the screening of the charge at the gates and the leads is included in the Coulomb
interaction of the electrons in the dot.

In Fig. 3.6, a 1D cut of the 2D Coulomb interaction ’potential’ is plotted for three cases:
The unscreened Coulomb interaction without a form factor diverges for x1 = x2 (Eq.(3.16).
Using a form factor of µ = 0.5 nm, the Coulomb interaction has a cut off and its maximum
is VCx1=x2

= 2.88 eV. For x1 6= x2, the Coulomb interaction equals the unscreened Coulomb
interaction without a form factor.

The screened Coulomb interaction calculated using the Poisson solver is different from the
unscreened Coulomb interaction. The screening from the gates causes the Coulomb interaction
fall off faster for a large distance. Also, the maximum of at x1 = x2 is VCx1=x2

= 0.82 eV,
which is significantly lower than for the unscreened Coulomb interaction. This difference does
not come from the gates, but from the silicon oxide the nanotube is lying on. The polarization
of the silicon oxide reduces the electric field inside the dielectric material, and thus it reduces
the Coulomb interaction of the electrons at the nanotube. For a suspended nanotube, the
value of the Coulomb interaction at x1 = x2 is VCx1=x2

= 1.91 eV.

3.3.4 Solving the discretized two-electron Schrödinger equation

To solve the two dimensional Schrödinger equation, we project the Hamiltonian onto a
discretized mesh, just like we did for the Poisson equation. For a uniformly discretized mesh
with spacing ∆x, the second derivative equation reads

f ′′(x) =
f(xi−1)− 2f(xi) + f(xi+1)

∆x2
(3.22)
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Figure 3.6: Cut of the 2D Coulomb interaction ’potential’ at x1 = 500 nm plotted on a linear scale
(left) and on a logarithmic scale (right). The unscreened Coulomb interaction can be softened by using
a form factor µ, resulting in a cutoff at x1 = x2. The screened Coulomb potential is calculated using
the 3D Poisson solver. The gates and leads are included in the calculations. For larger distances, the
Coulomb interaction is strongly screened by the gates and leads (and source and drain). For smaller
distances, the dielectric material underneath the nanotube also reduces the Coulomb interaction.

Applying this to the Schrödinger equation yields

ĤΦ(x1i , x2j ) =− ~2

2m∗∆x2

[
Φ(x1i−1 , x2j )− 2Φ(x1i , x2j ) + Φ(x1i+1 , x2j )

]
− ~2

2m∗∆x2

[
Φ(x1i , x2j−1)− 2Φ(x1i , x2j ) + Φ(x1i , x2j+1)

]
+
[
Uext(x1i) + Uext(x2j ) + VC(x1i , x2j )

]
Φ(x1i , x2j )

(3.23)

We only take the spatial part of the total wavefunction into account, since we use a spinless
Hamiltonian. In order to solve the Schrödinger equation, we rewrite it into a matrix form.
The easiest way to do this is to write the wavefunction Φ(x1, x2) as a 1D array, using a new
index

k = j + (i− 1)L (3.24)

The 1D representation of the 2D wavefunction then becomes

Φ̃k = Φ(x1(i−1)L
, x2j ) (3.25)

where L is the number of datapoints taken along the nanotube. The length of the 1D array
Φ̃k thus equals L2. For the Coulomb interaction term VC(x1, x2) we can do the same, yielding

ṼCk
= VC(x1(i−1)L

, x2j ) (3.26)

and for the external potential we get

Ũextk = Uext(x1(i−1)L
) + Uext(x2j ) (3.27)
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Using this representation, the Schrödinger equation can be written as a matrix of size L2×L2.
Every diagonal element corresponding to different indices i and j:

αk,k = [
~2

m∗∆x2
1

+
~2

m∗∆x2
2

+ Ũextk + ṼCk
]Φ̃k

=

αk,k = [
~2

m∗∆x2
1

+
~2

m∗∆x2
2

+ Uext(x1(i−1)L
)+

+Uext(x2j ) + VC(x1(i−1)L
, x2j )]Φ(x1(i−1)L

, x2j )

(3.28)

The four off-diagonal elements correspond to either Φ(x1i+1 , x2j ), Φ(x1i−1 , x2j ), Φ(x1i , x2j+1)
or Φ(x1i , x2j−1) :

βk,k+1 = − ~2

2m∗∆x2
2

Φ̃k+1 = − ~2

2m∗∆x2
2

Φ(x1(i−1)L
, x2j+1)

βk,k−1 = − ~2

2m∗∆x2
2

Φ̃k−1 = − ~2

2m∗∆x2
2

Φ(x1(i−1)L
, x2j−1)

βk,k+L = − ~2

2m∗∆x2
1

Φ̃k+L = − ~2

2m∗∆x2
1

Φ(x1(i)L
, x2j )

βk,k−L = − ~2

2m∗∆x2
1

Φ̃k−L = − ~2

2m∗∆x2
1

Φ(x1(i−2)L
, x2j )

(3.29)

Putting everything together results in a five-diagonal matrix of size L2 × L2. It may be
obvious that for a reasonable number of data points along the nanotube, the Schrödinger
matrix can get very large. Solving the eigenvalue problem for such a matrix requires a lot
of memory and computational power. Fortunately, the matrix is sparse and can be solved
easily using a method called the Lanczos method [41]. The Lanczos method is a well known,
iterative method which converges to the lowest (or highest) eigenvalue of a sparse matrix.
Using the Lanczos method, we can choose to calculate only a few lowest eigenvalues and
eigenvectors, instead of calculating the complete spectrum. The wavefunction with the lowest
energy corresponds to the spin singlet, and the second lowest to the spin triplet. For the
double dot case near to the anti-crossing (see Fig. 2.7), the four lowest states are the (0, 2)
and (1, 1) singlet and triplet states.

Just as in the real double dot experiment, the external potential in the simulation is
changed by changing the voltages at the gates only. The energies of the four states are
calculated for the corresponding gate voltages and an energy diagram as illustrated in Fig.
2.7 is found. In this energy diagram, the full 3D geometry of the device is taken into account,
screening of the gates and leads is included, and the energies and wavefunctions of the electrons
are the exact solutions of the two-electron Schrödinger equation.
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Chapter 4

Simulation results

4.1 Classical electrostatics

In this section we will present the results of classical electrostatics simulations. Before
we started working on these simulations, the program was thoroughly tested by comparing
simulation results with known solutions. Among these we compared the output with the
simple parallel plate capacitor, the wire to plane model, as well as experimental data [44,45].
All simulation results were in good agreement. In the next subsection we give an example of
relevant simulations done for a realistic nanotube device.

4.1.1 Capacitive coupling between an SET and a suspended nanotube

Suspending a nanotube in a device avoids the unwanted effects from trapped charges in the
oxide layer. However, doing so may result in changes in capacitive coupling of the nanotube
to other parts of the device. In the newest generation of nanotube devices, an SET is used
as a charge detector [29]. It is therefore important to know if, and how, capacitive coupling
between the nanotube and the SET changes by suspending the nanotube.

The capacitance between the SET island and a metallic nanotube is given by

CNTSET =
QNT

VSET
=
QSET

VNT
= CSETNT (4.1)

where QNT , QSET is the total charge at the nanotube and SET island respectively, and VSET ,
VNT is the voltage at the SET or nanotube (see Eq.(3.6)). The total capacitances, or self
capacitances of the nanotube and SET island are given by

CNTΣ =
QNT

VNT
(4.2)

CSETΣ =
QSET

VSET
(4.3)

For the charge detection, it is important to have a good coupling between the SET and the
dot in the nanotube. The coupling from the dot to the SET can be determined by calculating
the amount of charge at the SET, induced by an amount of charge in the dot. From Eq.(4.1)
and Eq.(4.2) the induced charge at the SET due to a charge at the nanotube follows

QSET =
CNTSET

CNTΣ

QNT (4.4)
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In the same way, using Eq.(4.1) and Eq.(4.3), the charge at the nanotube due to the charge
at the SET yields

QNT =
CNTSET

CSETΣ

QSET (4.5)

The latter coupling is unwanted coupling of the SET to the nanotube, which is called the
back-action.

Ideally, an electron entering the dot in the nanotube induces as much as possible (positive)
charge at the SET. From Eq.(4.4) it is clear that the capacitance between the SET and
nanotube should therefore be large, compared to the total capacitance of the nanotube (of
course CNTΣ ≥ CNTSET ). The back-action, defined by Eq.(4.5), should be low. For this reason,
the self capacitance of the SET should be relatively large.

The capacitances are calculated using the developed simulation program and the effect
of suspending the nanotube is studied. The simulation is performed for a device with a
suspended nanotube, and for the same device, but without suspending the nanotube. In the
simulation program, we use a metallic nanotube which can be represented as a line with a

SET

SET

Splitgate

Nanotube

Nanotube Nanotube

NanotubeS D

Figure 4.1: Topview (upper) and sideview (lower) of the device from Fig. 2.9 with a suspended
nanotube and a simplified charge detector (SET) as loaded into the simulation program. The distances
given on the axis are in units nm. The voltage at the SET island is set to 1 V and the electrostatic
potential is calculated (right). From the electrostatic potential, the capacitances are calculated.
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width and height of one pixel (1 nm). Furthermore, the device includes five splitgates as
illustrated in Fig. 2.9, a source and drain, and a simplified SET. The device is loaded into
the simulation program, and the electrostatics are calculated (see Fig. 4.1).

The nanotube is divided in three segments. The middle segment of the nanotube is called
NTdot and is 500 nm long (the total suspended part is 700 nm). This is the part where the
dot will be made. The capacitances between the SET and the nanotube are calculated for
this segment. Also the self capacitances are calculated. The results of the simulations are
given in table 4.1.

Table 4.1 shows that the capacitance between the SET and the nanotube decreases when
the nanotube is suspended. However, the coupling and back-action also depend on the self
capacitances, which are also decreased. Table 4.2 shows the coupling and back-action to the
dot.

Suspending the nanotube results in a significant increase of the coupling of the SET to
the part of the nanotube with the dot. At the same time, the back-action is decreased. The
ratio between the coupling and back-action is increased from a factor 2.15 to 5.09 for the dot.

From Eq.(4.5), it would seem that having a large self capacitance for the SET would
be ideal. In real devices however, the charge in the nanotube is not detected by looking
at the amount of charge at the SET, but by measuring the current through the SET. The
magnitude of the current oscillations through the SET gets smaller for smaller charging energy,
EC = e2/2CSETΣ , resulting in a lower overall sensitivity. The results of the simulations show
that the back-action is decreased for a suspended nanotube, but at the same time the self
capacitance of the SET is also slightly decreased. Therefore, the overall sensitivity of the
SET is slightly increased.

Non-suspended Suspended Rel. change

CSETNTdot
4.27 · 10−1 aF 3.49 · 10−1 aF −0.18 Capacitance SET to dot

CSETΣ 2.28 · 101 aF 2.21 · 101 aF −0.03 Self capacitance SET

CNTdot
Σ 1.06 · 101 aF 4.33 aF −0.59 Self capacitance dot

Table 4.1: Simulation results for a device with a suspended nanotube and one with a non-suspended
nanotube. For the device with the suspended nanotube, the calculated capacitances are lower.

Non-suspended Suspended Rel. change

CNTdot
SET /CNTdot

Σ 0.040 0.081 +1.00 Coupling, dot

CSETNTdot
/CSETΣ 0.019 0.016 −0.15 Back-action, dot

CSETΣ /CNTdot
Σ 2.15 5.09 +1.36 Coupling/back-action, dot

Table 4.2: Simulation results for a device with a suspended nanotube and one with a non-suspended
nanotube. Suspending the nanotube results in higher coupling to the nanotube and lower back-action.
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The simple simulations we did give us a qualitative picture of the capacitive changes
between the SET and the nanotube. All together, the results of the simulations are that
suspending the nanotube gives a better coupling of the dot to the SET. Also, the back-action
is lower for a suspended nanotube, and the overall sensitivity of the SET is slightly increased.

More relevant results from the 3D Poisson simulations can be found in reference [29]
and [46].

4.2 Quantum dots with many electrons

The capacitances calculated in the previous section are those of a system with a metallic
nanotube. For the double dot experiment, we will need a semiconducting nanotube. The
Thomas-Fermi approximation can be used to model semiconducting materials.

4.2.1 Controlling quantum dots in semiconducting nanotubes

In this subsection we will discuss two devices which could be used to make a dot with
tunable barriers in a semiconducting nanotube. One device uses topgates to locally deplete
the nanotube. In the other device splitgates are used and barriers are formed by p-n-junctions.
The devices are illustrated in Fig. 2.8.

For the simulations, we use a device with two topgates which has a silicon oxide layer
of 285 nm between the nanotube and the backgate. The topgates are separated from the
nanotube by an oxide layer of 20 nm and the topgates themselves are 30 nm high. For the
splitgate device, the distance between the splitgates and backgate is 285 nm. The two split-
gates are 50 nm thick and on top of the split gates is another 100 nm of silicon oxide on which
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Figure 4.2: 1D potential and charge per unit length along the nanotube for two different devices
for different backgate voltages. Left: topgates are used to locally deplete the nanotube such that in
between a dot is formed. For a low backgate voltage (VBG ≤ 0.5 V), the nanotube is depleted in
between the topgates and thus there is no dot. For high backgate voltage (VBG ≥ 3.5 V) the nanotube
is no longer depleted underneath one or more topgates. For this range of voltages, only for VBG = 1.5 V
a dot is formed. Right: Splitgates pull the valence band above the Fermi level and barriers are formed
by p-n-junctions. For VBG ≥ 1.5 V, a dot is formed.
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Figure 4.3: 1D potential and charge per unit length along the nanotube for the topgate device (left)
and the splitgate device (right). Only the voltage at the left gate (topgate or splitgate) is changed.
Left: The width of the depletion region can be controlled by the voltage applied to the topgate. For a
high topgate voltage, a second (p-type) dot is formed below the topgate. Right: changing the splitgate
voltage changes the width of the depletion region and also shifts its position.

the nanotube lies. The total distance between the nanotube and the backgate is 450 nm.
The horizontal distance between the topgates as well as between the splitgates is 300 nm.
In the simulation we use the Thomas-Fermi approximation as given in subsection 3.2.1 to
model the electronic properties of the nanotube. The bandgap of the nanotube is chosen to
be Eg = 300 meV.

We calculate the electrostatic potential for different voltages applied to the gates to find
the effect on the barriers and the dot. To do this, one gate (topgate, respectively splitgate) is
set to −200 mV and the voltage of the second gate and the backgate are swept. Ideally, the
barriers are controlled with the topgates or splitgates, and the backgate is used to control the
number of electrons in the dot. First we keep the right gate fixed at −200 mV and the left
gate at −400 mV and calculate the 3D electrostatic potential for different backgate voltages.
In Fig. 4.2 the electrostatic potential and corresponding charge distribution is plotted for
different backgate voltages.

For the topgate device with the give topgate voltages, there is no dot formed for VBG ≤
0.5 V. For this backgate voltage, the Fermi level lies in the bandgap for the part in between
the topgates, and therefore the nanotube is here depleted. For a high backgate voltage
VBG ≥ 2.5 V, the nanotube is no longer depleted underneath the topgates, i.e. the barriers
vanish. The barriers are formed by by compensating the electric field from the backgate with
the topgates. Therefore, the width of the barrier is does strongly depend on the backgate
voltage.

In the splitgate device there is also no dot formed for VBG ≤ 0.5 V. In contrast with the
topgate device however, the barriers will not vanish for higher backgate voltages. Increasing
the backgate results in a larger dot, and the barriers are shifted in position instead of being
reduced.

Next we sweep one of the topgates and one of the sidegates, keeping the voltage at the
backgate and the other gates fixed. The calculated potentials and charge distributions are
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Figure 4.4: Dependence of the number of electrons in the dot versus backgate voltage. The capac-
itance between the backgate and nanotube, given by the slopes of the lines, is higher for the topgate
device. The dashed line corresponds with the case where an extra p-type dot underneath the topgate
is formed.

plotted in Fig. 4.3. For the given backgate voltage, there is no barrier for VTG = −50 mV.
Increasing the topgate voltage increases the barrier width and decreases the dotsize. However,
at topgate voltage of VTG ≤ −800 mV, the valence band is pulled above the Fermi level and
a p-type dot is formed under the topgate.

Splitgates completely screen the electric fieldlines from the backgate. When the voltage
at the splitgates is small enough, the part of the nanotube screened by the splitgates is
depleted. Fig. 4.3 shows that for VSG ≥ −50 mV, the nanotube lying above the left splitgate
is completely depleted. For higher (negative) splitgate voltage, this part of the nanotube is
doped with holes and the width of the barrier is decreased.

The number of electrons will in both devices be controlled with the backgate. Fig. 4.4
shows the number of electrons as a function of the backgate voltage. The capacitances of the
gates to the dot are given by the slopes of Fig. 4.4. For the splitgate devices, the number
of electrons depends linearly on the backgate voltage when five or more electrons are in the
dot. For this region the capacitance is CBGNTdot

= 0.9 − 1.1 aF. For the topgate device, the
capacitance is CBGNTdot

= 1.7 − 2.5 aF for 0.5 V ≤ UBG ≤ 2 V. For a backgate voltage higher
than VBG = 2 V, the barriers vanish. The large difference in the capacitance for the two
devices is a result of the splitgates screening the electric fieldlines from the backgate. Also,
the capacitance of the backgate depends on the voltage at the other gates.

The width of the barriers between the dot and the leads is controlled with the topgates
or splitgates. However, the number of electrons also depends on the voltages applied to these
gates. Moreover, for a high topgate voltage, it can happen that a second dot is created
underneath the topgate. In Fig. 4.5, the with of the (left) depletion region is plotted versus
the topgate and splitgate voltage, together with the number of electrons in the dot. The
width of the barriers and the number of electrons in the dot are plotted for two different
backgate voltages.

Fig. 4.5 shows the difference of how the barriers are controlled. The barrier under the

Kavli Institute of Nanoscience
Quantum Transport Group

40



4.2. Quantum dots with many electrons

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
0

20

40

60

80

100

120

140

160

180

200

D
ep

le
tio

n 
w

ith
 [n

m
]

Depletion region and electron number versus topgate voltage

0

1

2

3

4

5

6

7

8

9

10

#e
 in

 th
e 

do
t

Topgate voltage [V]

# electrons Ubg = 600 mV
# electrons Ubg = 900 mV
depletion width Ubg = 600 mV
depletion width Ubg = 900 mV

0

20

40

60

80

100

120

140

160

180

200

D
ep

le
tio

n 
w

ith
 [n

m
]

Depletion region and electron number versus splitgate voltage

0

1

2

3

4

5

6

7

8

9

10

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
Splitgate voltage [V]

#e
 in

 th
e 

do
t

# electrons Ubg = 2.5 V
# electrons Ubg = 2.0 V
depletion width Ubg = 2.5 V
depletion width Ubg = 2.0 V

Figure 4.5: Number of electrons and depletion width versus gate voltage. The backgate is set to
VBG = 600 mV and VBG = 900 mV for the topgate device (left) and VBG = 2.0 V and VBG = 2.5 V
for the splitgate device (right). The number of electrons decreases for a higher (more negative) gate
voltage. The depletion width is reduced for lower (less negative) topgate voltage, while it is increased
for lower (less negative) splitgate voltage. For higher (more negative) splitgate voltage, the depletion
width saturates. When the topgate voltage gets too high, a dot under the topgate is created (dashed
line).

topgate gets larger for a more negative gate voltage, while a more negative voltage applied
to the splitgates results in a smaller barrier. For topgates, the width depends linearly on the
topgate voltage. However, the width also depends on the backgate voltage and the maximum
width that can be obtained is different for different backgate voltage. The barriers in the
splitgate device are less dependent on the backgate voltage. This is because the barriers are
shifted in position when the backgate voltage is changed. For the splitgate device the width is
limited by the p-n-junction, and therefore the barrier has a lower bound instead of an upper
bound.

From the simulations we see that both the topgate device as the splitgate device are very
suitable to create a dot with tunable barriers. However, there are some limitations. The
voltage adjusted to the topgates must be adjusted to the backgate voltage to still get a dot in
the nanotube. For a large backgate voltage, the nanotube is no longer depleted underneath
the topgates. On the other hand, when the topgate voltage gets too high, a second, unwanted,
p-type dot is created underneath the topgate. Within this region, the width of the depletion
region depends linearly on the topgate voltage.

The transmission probability from the leads to the dot for electrons close to the Fermi
energy can be calculated using the WKB approximation [47]. For the topgate device, the
barriers can be made very transparent and the tunnel probability can be controlled from
approximately unity to approximately zero. The p-n junctions in the splitgate device limit
the barrier width and thus limit the transparency. Here, the barrier height is given by
E−Ub(x) = min(|E−Uc(x)|, |E−Uv(x)|), where Uc and Uv are the energies of the conduction
and valence band respectively. For the range of given voltages, the tunnel probability can
be tuned from approximately zero to T = 4 · 10−5 using the splitgate. Assuming four-fold
degeneracy, the resistance of such a barrier equals R = 79 MΩ. Other simulations have
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Figure 4.6: Recent experimental data for a suspended nanotube in a splitgate device. The polarity
of the nanotube is changed from p-p-p to p-i-p to p-n-p. The measurement was done for T = 2 K.

shown that the tunnel probability can be increased to T = 0.10 by applying a voltage of
VSG = −5.0 V to the splitgate.

Recent experiments have confirmed that it is possible to make a quantum dot by making
a p-n-p junction in a carbon nanotube, see Fig. 4.6. The device used for this experiment
is very similar to the one presented in this subsection. The measurements were done for a
suspended nanotube, which has a bandgap of Eg ≈ 78 meV. The splitgate voltages were kept
constant at VSG = −50 mV and the backgate and source-drain bias were swept. The data
shows that the nanotube is completely doped with holes for low backgate voltage, and that an
n-type dot can be formed by increasing this voltage. The charging energy is approximately
EC = 40.8 meV for the first electron and decreases when more electrons are added to the dot.

4.2.2 Level spacing in a quantum dot in a semiconducting nanotube

The Thomas-Fermi simulations, and recent experiments, show that both splitgates and
topgates can be used to control a quantum dot in a semiconducting nanotube. Using the
splitgate device, it is possible to suspend the nanotube which avoids the effect of trapped
charges in the oxide layer, and increases the coupling to the SET. This is not possible for a
topgate device. For this reason we will use a device with splitgates for the next simulations
(Fig. 2.8).

We are interested in the level spacing of the electrons in the quantum dot and we will
use the Hartree approximation for these calculations. For the simulation, we use the same
device as in the previous subsection. For the Schrödinger equation we use an effective mass
of m∗/me = 0.03 (corresponding to a gap of Eg = 300 meV). We fix the number of electrons
and calculate the self-consistent solution as described in subsection 3.2.2. We take the energy
of the highest occupied orbital compared to the chemical potential of the leads for different
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Figure 4.7: Chemical potential of the groundstate for 40 to 45 electrons. When the calculated lines
cross with the chemical potential of the leads (µ = 0), it is energetically more favorable to let an
electron tunnel into the dot. When the 41st or 45th electron is added, the addition energy corresponds
to the charging energy plus the level spacing.

gate voltages and different electron number. Fig. 4.7 gives the results for 40 to 45 electrons.
In the simulations, every 4N + 1 electron is put in a higher orbital, which correspond to the
four-fold filling in the presence of valley-degeneracy.

When the self consistent solution is found, we look at the energy of the last electron added
to the dot. Fig. 4.7 gives the energy of the highest occupied orbital versus gate voltage for
different number of electrons. When the line of the calculated energies crosses the Fermi
energy of the leads (which is set to EF = 0), this corresponds to an electron entering the dot.
From these calculations, relevant parameters of the quantum dot can be obtained. First of all,
the capacitance of the backgate is given by the gate voltage difference between two electrons
entering the dot. The capacitance of the backgate to the dot is CBGNTdot

= 1e/105 mV = 1.5 aF.
For the backgate voltage corresponding to an electron entering the dot, the the energy

difference between the energy of N and N − 1 electrons equals the addition energy. For the
41st and 45th electron, the addition energy equals the charging energy plus the level spacing,
since for these cases the electrons have to occupy a higher orbital (using the four-fold filling).
The addition energy for these two electrons is E(41)

add = 21.7 meV and E
(45)
add = 21.3 meV.

For the other electrons the addition energy equals the charging energy: E(42)
add = 20.8 meV,

E
(43)
add = 20.7 meV and E

(44)
add = 20.6 meV. From these results it follows that the level spacing

is of the order of δ = 0.8 meV. The charging energy decreases when the electron number is
increased. Since the charging energy is inversely proportional to the self capacitance of the
dot, this is what we expect. For a larger number of electrons, the dot gets larger and the self
capacitance increases.

Next, we look at the spectrum of the electrons in the quantum dot for a fixed number
of electrons. The gate voltages are tuned until the Thomas-Fermi approximation gives the
desired number of electrons. The spectrum with corresponding wavefunctions are calculated
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Figure 4.8: Self consistent potential and wavefunctions of the Hartree approximation for 100 elec-
trons. The solid lines correspond to filled states, dashed lines correspond to empty states.
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Figure 4.9: Thomas-Fermi potential for 100 electrons with calculated wavefunctions. The axis are
equal to the axis in Fig. 4.8. The Fermi energy is EF = −Eg/2 = −0.15 eV.



4.2. Quantum dots with many electrons

for the found potential, which we will refer to as the Thomas-Fermi spectrum. We will not
use the found wavefunctions for any further calculations.

From the initial guess given by the Thomas-Fermi approximation, we will continue and
calculate the Hartree approximation. The Hartree approximation results in a self consistent
potential with corresponding (self consistent) wavefunctions. The spectrum obtained from
the Hartree approximation is compared with the spectrum calculated from the Thomas-Fermi
potential. In Fig. 4.8, the self consistent Hartree potential and wavefunctions for a dot with
100 electrons are plotted. In Fig. 4.9, the Thomas-Fermi potential is given for the same dot
and same number of electrons, together with the calculated wavefunctions and eigenvalues
for this potential. The axis in both plots are equal such that a good comparison can be made
between the two spectra.

The first thing to notice is the large difference in the potentials. The self consistent Hartree
potential is much steeper than the Thomas-Fermi potential, resulting in a larger level spacing
for the Hartree approximation. Also, near the Fermi energy, there is a bump in the Hartree
potential at the edge of the dot. Here, the energies levels are closer to each other, compared
to states with a lower energy. The bump in the potential is typical for the self consistent
Hartree potentials we find.

In the Thomas-Fermi approximation, the Fermi energy is predefined and equals EF =
−Eg/2 = −150 meV. For the Hartree approximation, the Fermi energy is defined by the
energy of the highest occupied orbital and equals EF = −140 meV for 100 electrons. For
both spectra, the level spacing is larger for energies higher than the Fermi energy. For this
regime, the Fermi energy lies inside the bandgap and so the nanotube is depleted. The
potential is therefore very steep for energies higher than the Fermi energy corresponding to
a larger level spacing.

The calculated potentials with corresponding spectra are different from any simple model
potential, especially for the Hartree approximation. We take a closer look at the level spacings
for the Thomas-Fermi potential and the Hartree approximation for 100 electrons and for 45
electrons. The calculated level spacings for 100 electrons and for 45 electrons are given in
Fig. 4.10. Both the level spacing for the Thomas-Fermi spectrum as for the self consistent
Hartree spectrum is given.

For low eigenvalue numbers, the Thomas-Fermi spectrum is relatively constant, corre-
sponding to a harmonically shaped potential. For higher energies, the level spacing increases,
suggesting that the hard wall nature of the potential becomes more important. The level
spacing at high energy obtained from the Hartree approximation converges to the Thomas-
Fermi spectrum, meaning that the hard wall like potential is approximately the same in both
approximations. For energies lower than the Fermi-energy however, the level spacing is sig-
nificantly larger for the Hartree approximation. The spacing between the highest occupied
level and lowest unoccupied level is the smallest. Although we have used a continuum ap-
proximation instead of filling the actual orbitals, also for the Thomas-Fermi approximation,
a minimum in the level spacing is observed.

When we compare the spectrum of the two different potentials (Fig. 4.8 and 4.9), we see
that the number of states below the Fermi-energy is different for both cases. In the Hartree
approximation, the Fermi-energy is defined by the energy of the highest occupied level, and
therefore there are 25 levels below the Fermi-energy for 100 electrons. For the Thomas-Fermi
approximation, there are only 18 states below the Fermi-level (EF = −Eg/2 = −0.15 eV).
Because the number of states below Fermi energy is different for both approximations, the
minimum in the level spacing occurs for different eigenvalue numbers.
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Figure 4.10: Level spacing for the Thomas-Fermi potential and the self consistent Hartree approxi-
mation for 45 and 100 electrons. The levelspacing for eigenvalue number 1 corresponds to the energy
difference of the first and second state. For eigenvalue number 2 it is the energy difference of state 2
and 3, etcetera. A four fold filling is used, such that for 45 electrons the Hartree levels are filled up to
the 11th level for 45 electrons and up to the 25th level for 100 electrons. The level splitting is smallest
between the highest occupied state and lowest unoccupied state.

The solution of both approximations is the one of which the total energy, including the
electrostatic energy of electrons interacting with charge on the gates, is minimal. This implies
that the charge distribution in the dot will always converge to a smooth charge distribution
which is not too different from the Thomas-Fermi approximation. We indeed observe that the
charge distribution from the Hartree approximation and the Thomas-Fermi approximation is
almost identical when the number of electrons is large. Consequently, the potential will be
such that the corresponding charge distribution is as smooth as possible. From this point of
view, we can conclude that the change in spectrum we observe is purely a electrostatically
driven phenomena.

4.3 Quantum dots with two electrons

When treating a large number of electrons, both the Hartree approximation and Thomas-
Fermi approximation are useful. The approximations can be used to calculate, among other
things, depletion regions in a nanotube, the (self consistent) spectrum of a quantum dot
and charging energies for different number of electrons. For a small number of electrons
however, self interaction of the electrons results in large errors. We could avoid the self
interaction by using a unrestricted form of the Hartree approximation, meaning that we have
to solve a different Hartree equation for each electron. The problem with this unrestricted
Hartree approximation is that it does not guarantee that the wavefunctions are orthogonal,
as required by the Pauli principle. For two electrons with opposite spin, the spin parts of the
wavefunctions are orthogonal and this method could be used. For the same argument, the
method can be used for up to four electrons when valley degeneracy is present.

However, the Hartree approximation only includes Coulomb repulsion and completely
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4.3. Quantum dots with two electrons

neglect correlations between the electrons. To model the two electrons in the double dot,
the Hartree approximation is therefore no longer sufficient and we therefore use the exact
diagonalization calculations (section 3.3). For all calculations, we assume that the valley
degeneracy is broken with a small magnetic field parallel to the nanotube. We ignore the
Zeeman effect which simply shifts the energies of the triplet states T+ and T− by ±58 µeVT−1

[20].

4.3.1 Singlet-triplet splitting of two electrons in a double dot

The device we will use to make the double dot is a device with five splitgates. In the
device, the nanotube is suspended such that effects from trapped charges in the oxide layer
are avoided, and coupling to the SET is increased. We use five splitgates, from which the
middle splitgate is used to split the dot into a double dot. The vertical separation between
the splitgates and the nanotube is 100 nm. The width of the splitgates equals 100 nm and
the distance in between the splitgates is also 100 nm. By varying the voltages of the five
independent gates, it is expected that the double dot can be controlled. The backgate is not
used in this setup (see also Fig. 2.9).

In the simulation, we keep the outer two splitgates fixed at a given voltage, which dope
the nanotube with holes. The middle splitgate is also kept at a constant voltage. The other
two splitgates are used to control the energy in each dot separately. We calculate the bare
potential as described in subsection 3.3.3 for different gate voltages and solve the two-electron
Schrödinger equation using the 2D screened Coulomb interaction ’potential’ calculated for the
device.

When there is one electron in each dot (the (1,1) situation), the singlet-triplet splitting is
expected to be very small. For the (0,2) or (2,0) case, with one electron in each dot, we can
estimate the singlet-triplet splitting using the shell filling model. The singlet-triplet splitting
is given by the level spacing minus the exchange interaction ∆ST0,2 = ~ω0 −Exc. Here ω0 is
the trap frequency of the potential and Exc is the exchange correlation energy difference due
to the anti-symmetry requirement of the (total) wavefunction (Exc is often referred to as J).

For GaAs 2DEG systems, the double dot experiment has been well characterized exper-
imentally. For these systems, the level splitting ~ω0 is about 2 meV for a single dot. The
exchange correlation interaction is typically half of the level spacing Exc = ~ω0/2 = 1 meV
such that the singlet-triplet splitting is ∆ST0,2 = ~ω0/2. For nanotubes, the level spacing for
many electrons is of the same order of magnitude. We therefore expect that singlet-triplet
splitting is similar to that of GaAs systems.

Fig. 4.11 shows two calculated bare potentials for the double dot for the splitgate device
with five splitgates for a nanotube with a bandgap of Eg = 300 meV. The voltage at the
outer two splitgates is set to VSGLeads

= −2.5V and the middle splitgate is kept fixed at
VSGM

= +100meV. In the left plot, the chemical potentials of the two dots are aligned such
that there is one electron in each dot. The two splitgate voltages are VSGL

= VSGR
= 1.350V.

Changing the voltages to VSGL
= 1.500V and VSGR

= 1.200V results in the right picture,
where both electrons are in the left dot 1.

For both potentials we calculate the single particle level spacing ~ω0. For the (1,1) case,
the level spacing is approximately zero, as expected, since the interdot coupling is small. The

1Note that we have ignored the valence band in the calculations of the potentials given in Fig. 4.11. When
the barrier is too high, this could result in co-tunneling through the valence band. Ideally, the barrier height
is (much) lower than Eg/2.
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Figure 4.11: Double dot bare potential energy for the two electrons. The solid lines correspond to
the single-electron energy levels calculated from the exact diagonalization with the screened Coulomb
potential for the device. The dashed lines are the single-electron energies without Coulomb interaction
(the difference equals the single particle level spacing). Left: the chemical potentials are aligned such
that there is one electron in one dot. The calculated singlet-triplet splitting is ∆ST11 ≈ 0 (the
calculated value is 3 · 10−15 eV, which is of the same order as the truncation error). The two levels S1,1

and T1,1 are obviously not distinguishable in the plot. The single particle level spacing (~ω0) for the
given potential is δ11 ≈ 0 (1 · 10−14 eV). Right: the potential is tilted such that the two electrons are
now both in the left dot. The single particle level spacing is δ20 = 11.6 meV. The calculated singlet
and triplet energies are again not distinguishable. The singlet-triplet splitting for the (2,0) case is only
∆ST2,0 = 0.53 µeV.

singlet-triplet splitting ∆ST1,1 is of the same order as the single particle level spacing and is
approximately zero. The (1,1) states are thus degenerate. In the real double dot experiment,
the (1,1) singlet and triplet states can mix due to interaction with the environment because
of this degeneracy.

For the (2,0) case for the given gate voltages, the single particle level spacing is δ =
11.6 meV, which is (very) large compared to the typical level splitting of GaAs. However,
the singlet-triplet splitting for the (2,0) case is about four orders of magnitude smaller than
expected: ∆ST2,0 = 0.53 µeV. The calculated 2D wavefunctions can be found in appendix A.

The small singlet-triplet splitting suggest that the exchange correlation energy Exc is
approximately equal to the level spacing ~ω0, or, that something else is going on. In the next
subsection, we will use a simple model to understand why the singlet-triplet splitting is so
much smaller than expected.

4.3.2 The harmonic oscillator model

The simplest model to verify the results of the simulations is the well known harmonic
oscillator model. The external potential for the harmonic oscillator is given by

Uext(x) =
1
2
m∗ω2

0x
2 (4.6)
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Figure 4.12: Singlet-triplets splitting versus trap frequency. The dashed black line corresponds to
the level spacing ~ω0, which is the singlet-triplet splitting for non-interacting electrons. According to
the shell filling model, the singlet-triplet splitting equals the single particle level splitting minus the
exchange correlation energy Exc.

where ω0 is the trap frequency of the potential. We solve the two-electron Schrödinger equa-
tion for the harmonic oscillator potential. We use a cut-off distance of µ = 1 nm and a relative
dielectric constant εr = 1.0 for the Coulomb interaction ’potential’. These parameters corre-
spond to a nanotube which is suspended. For the calculations, we use the same effective mass
as in the previous subsection (m∗ = 0.0293me, corresponding to a bandgap of Eg = 300 meV).

According to the shell filling model, the singlet-triplet splitting is given by the level spacing
minus the exchange correlation energy: ∆ST = ~ω0 − Exc. The singlet-triplet splitting for
different trap frequency ω0 is plotted in Fig. 4.12. For high trap frequencies, the singlet-
triplet splitting is equal to the level splitting minus some constant energy, the exchange
correlation interaction Exc. For low trap frequencies, the singlet-triplet splitting goes to zero,
suggesting that the exchange energy equals the single particle level spacing. A more thorough
understanding can be gained by taking a closer look at the results.

By applying the Hamiltonian to the two-electron wavefunctions, we get the energies of
the electrons:

〈Φ(x1, x2)|Ĥ|Φ(x1, x2)〉
=

〈Φ(x1, x2)| ~2

2m∗
(
d2

dx2
1

+
d2

dx2
2

) + Uext(x1) + Uext(x2) + VC(x1, x2)|Φ(x1, x2)〉

=
Ek + Epot + EC

(4.7)

The Coulomb interaction energy is thus found by the overlap of the wavefunction with the 2D
Coulomb interaction ’potential’. The symmetric wavefunction is in general maximal at x1 =
x2, where the Coulomb interaction potential is maximal. The anti-symmetric wavefunction
has a node at x1 = x2, such that the overlap is much smaller compared to the symmetric
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Figure 4.13: Different energy components divided by the level spacing ~ω0. For a very high trap
frequency, the single particle level spacing equals ∆Ek + ∆Epot = ~ω0 and the singlet-triplet splitting
equals ~ω0 − Exc. When the trap frequency is lowered, the exchange correlation energy increases (I).
For region II, the exchange correlation energy starts to decrease again. Also, ∆Ek and ∆Epot decrease.

wavefunction. This difference in energy due to the different Coulomb interaction is know as
the exchange correlation energy Exc.

The singlet-triplet splitting is thus given by

∆ST = (Ektriplet
− Eksinglet

) + (Epottriplet
− Epotsinglet

) + (ECtriplet
− ECsinglet

)

= ∆Ek + ∆Epot − Exc
(4.8)

which is consistent with the shell filling model when ∆Ek + ∆Epot = ~ω0.
In Fig. 4.13, the different energy components, relative to the level spacing, are plotted.

For very high frequency (indicated by I), the difference in kinetic energy and potential energy
between the triplet and singlet states converges to ∆Ek + ∆Epot = ~ω0. Here, the singlet-
triplet splitting is consistent with the shell filling model, since ∆ST = ~ω0−Exc holds. When
the trap frequency gets lower, the exchange correlation energy Exc increases. This can be
explained from the shape of the wavefunctions. For lower trap frequency, the wavefunctions
get broader, and the difference in overlap with the Coulomb interaction potential increases.
However, for a trap frequency lower than approximately ~ω0 = 400 meV (II in Fig. 4.13), the
exchange correlation energy decreases again. At the same time, ∆Ek and ∆Epot decrease.
This means that the singlet-triplet splitting for a low trap frequency is small because of the
small difference in the kinetic and potential energy, and not because of a large exchange
correlation energy. For this region, the shell filling model is no longer valid.

Fig. 4.14 shows the 2D wavefunctions of the singlet and triplet state and the correspond-
ing charge distribution. In (a), the trap frequency is very high and the wavefunctions and
charge distribution are as expected from the shell filling model. The charge distribution is
approximately 10 nm broad. For lower trap frequency (b), the 2D singlet wavefunction gets a
local minimum at x1 = x2, which reduces the Coulomb energy. Here, the charge distribution
is about 15 nm broad and gets a local minimum in the middle. The charge distribution is
further broadened for a trap frequency of ~ω0 = 20 meV. The singlet 2D wavefunction is now
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4. Simulation results

approximately zero at x1 = x2, such that the singlet and triplet wavefunction are (almost)
equal, except for a phase difference. This results in a very low exchange correlation energy.
Furthermore, since the shape of the wavefunctions is (almost) equal except for the phase
difference, the kinetic and potential energy are also (almost) the equal. For this reason, the
singlet-triplet splitting is very small.

Fig. 4.14.d. shows the linecut perpendicular to the line x1 = x2, representing the ampli-
tude of the wavefunction for x1 − x2. The Coulomb energy is found by the overlap of the
wavefunctions with the Coulomb interaction potential. At x1 = x2, the Coulomb interac-
tion potential is maximal. When the trap frequency is lowered, the amplitude of the singlet
wavefunction at x1 = x2 decreases. This results in a lower Coulomb interaction energy of
the singlet state, such that the exchange correlation energy Exc decreases. Eventually, for
low trap frequency, the linecut of the singlet and triplet state are identical, except for the
phase difference. At this trap frequency, the electrons have separated to save Coulomb energy,
forming what one might call a Wigner crystal [48, 49]. Here, the spatial wavefunctions are
equal except for the phase difference, such that the singlet-triplet splitting vanishes.

For the potential given in the previous subsection, the trap frequency of the (2,0) po-
tential is ~ω0 = 11.6 meV. This trap frequency is high compared to a typical GaAs system.
However, from the harmonic oscillator model we can conclude that for a potential with this
trap frequency, the electrons are separated, resulting in the low singlet-triplet splitting found.

While this result may seem surprising, the difference from GaAs system can be understood
from comparison of the relevant parameters. A typical dotsize in a nanotube is about 200 nm
wide, which is much larger compared to the typical dotsize in GaAs systems (d = 20 nm for
~ω0 = 1 meV). Moreover, the dielectric constant of the surrounding material equals one for a
suspended nanotube, while it is more than ten times higher for GaAs (εrGaAs = 13.8). This,
and the strong Coulomb interaction and correlation between the electrons due to the 1D
nature of the nanotube, makes it energetically more favorable for the electrons to separate.

4.3.3 Controlling the double dot

For the double dot experiment, it is required that the interdot coupling (t12) is much
smaller than the singlet-triplet splitting. Due to the separation of the electrons however, the
singlet-triplet splitting is very small. To meet the requirements of the double dot experiment,
the interdot coupling must be decreased, or the confinement of the potential must be increased.

The design of the splitgate device is such that the energy of each dot, as well as the barrier
in between them, can be controlled. Increasing the barrier results in a lower inter dot coupling.
However, the barrier must be lower than half the bandgap, to suppress co-tunneling through
the valence band. On the other hand, increasing the barrier results in a steeper potential and
thus the energy cost for the occupation of the triplet state is increased.

From the this restriction, it would seem that having a large bandgap is favorable, such
that a steep potential as well as a low interdot coupling can be realized. However, the effective
mass is inversely proportional to the bandgap. Simulations have shown that having a tube
with large bandgap results in a lower singlet-triplet splitting, even though the potential can
be made much steeper.

As in real life, tuning the double dot until the right parameter space is found can take a
long time. Fig. 4.15 show the final results. The energy diagram is calculated for a realistic
device with five splitgates and a suspended nanotube. The outer two splitgates are set to
VSG1 = VSG5 = −50.0 V to create a steep confinement potential. The middle splitgate is
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4.3. Quantum dots with two electrons

kept at a fixed voltage, ranging from VSG3 = +2.65 V to VSG3 = +2.50 V The other two
splitgates (SG2 and SG4) are adjusted such that the energy of the double dot allows only
two electrons in the dot. The bare potential is calculated for the given gate voltages, and the
two-electron Schrödinger equation is solved using the screened Coulomb interaction calculated
for the device. By applying different gate voltages to SG2 and SG4, the potential is tilted
until the anti-crossings of the singlet and triplet states are found.

The barrier height varies from Ebarrier = 87 meV for VSG3 = +2.65 V to Ebarrier =
116 meV for VSG3 = +2.50 V. The corresponding calculated interdot couplings vary from
t12 = 2.33 µeV to t12 = 0.9 neV. When the barrier is lowered, the potential is more shallow
and therefore the singlet-triplet splitting is decreased. For a relatively low barrier (VSG3 =
+2.65 V), the singlet-triplet splitting is ∆ST2,0 = 0.72 µeV, which is much smaller than the
interdot coupling. For the high barrier (VSG3 = +2.50 V), the singlet-triplet splitting is still
small: ∆ST2,0 = 2.11 µeV, but it is much larger than the interdot coupling.

The simulations have shown that both the interdot coupling as the singlet-triplet split-
ting is changed by applying a different voltage to the middle splitgate. The singlet-triplet
splitting remains small, even for very high gate voltage applied to the outer two splitgates.
Experimentally, this means that the small singlet-triplet splitting of ∆ST = 2.11 µeV limits
the temperature to T ≈ 25 mK, to be able to initialize the system to the S1,1 state.

When the gates are used to let the system go through the anti-crossing, the timescale
of this operation is limited by the interdot coupling. Analogue to Eq.(2.25), the timescale
corresponding to the interdot coupling of t12 = 0.9 neV equals t = 0.7 µs. This means that if
the time is shorter than this limit, the electrons will remain in the S11 state.

For a temperature much lower than T = 25 mK and a timescale much longer than t =
0.7 µs, the spin states can be resolved by detecting the change of charge distribution, shown
in Fig. 4.16.
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Figure 4.15: Calculated energy diagrams for different gate voltages of a realistic device with five
splitgates. The interdot coupling and singlet-triplet splitting are dependent on voltage applied to the
middle gate. The interdot coupling can be tuned such that it is much smaller than the singlet-triplet
splitting, t12 � ∆ST (d). When the interdot coupling is decreased, the confinement potential is
steeper, resulting in a higher singlet-triplet splitting.
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Figure 4.16: Charge distribution corresponding to the two lowest eigenstates in Fig. 4.15.c versus
gate voltage. Starting on the left, both the singlet and triplet state is distributed over two dots. The
left dot contains more charge compared to the right dot, indicating mixing of the (1,1) and (2,0) states.
At about SG2 − SG4 = 7 µV plus some offset, the singlet (1,1) and singlet (2,0) strongly mix. For
higher gate voltage difference, the lowest state corresponds to the S2,0 state. For the triplet state, the
process is similar. The T1,1 and T2,0 states mix, and for high gate voltage difference, the first excited
state equals the T2,0 state. Since the transition of the ground state from S1,1 to S2,0 occurs at different
gate voltages than for the triplet states, the spin state of the electrons can be resolved from the charge
distribution.





Chapter 5

Conclusions and recommendations

5.1 Conclusions

Based on the results of 3D electrostatic simulations, where Poisson’s equation is solved
numerically, the conclusions are:

• Suspending a carbon nanotube results in a better coupling of the quantum dot to the
single electron transistor (SET).

• Back-action from the SET to the quantum dot is reduced, when the nanotube is sus-
pended.

• Suspending results in a better overall sensitivity of the SET.

Based on the results of 3D electrostatic simulations, combined with a Thomas-Fermi
approximation and/or Hartree approximation for the carbon nanotube, the conclusions are:

• Both a device with topgates and a device with splitgates can be used to control a
quantum dot in a semiconducting carbon nanotube. Splitgates can be used to form
barriers by p-n junctions at the nanotube. Although the barriers formed by p-n junction
are typically less transparent than barriers formed by locally depleting the nanotube,
barriers formed by the p-n junctions are tunable from T ≈ 0 to T = 0.10 or higher.
Recent experiments have shown that it is possible to make a quantum dot by making a
p-n-p junction in a suspended nanotube, using splitgates.

• The charging energy for a single dot containing about 40 electrons in a carbon nanotube
device with splitgates is of the order of 20 meV and decreases when the number of
electrons is increased. The levelspacing for this dot is δ = 0.8 meV and increases with
the number of electrons.

• The spectrum of the quantum dot, obtained from the Hartree approximation, will be
such that the corresponding charge distribution is as smooth as possible. For this
spectrum, the level splitting is highest for the lowest eigenstates, and smallest between
the highest occupied state and lowest unoccupied state. The spectrum corresponding
with the Thomas-Fermi potential is also highest for the lowest eigenstates, and is also
the smallest at the Fermi-energy. The Fermi-energy defined for the Thomas-Fermi
approximation is lower then the Fermi-energy obtained from the Hartree-approximation.
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The charge distribution from the Hartree approximation and from the Thomas-Fermi
approximation are almost identical.

Based on 3D electrostatic simulations with the Thomas-Fermi approximation for the leads
of the nanotube only, combined with the exact diagonalization of the two-electron Schrödinger
equation for the electrons in the dot, the conclusions are:

• A device with five splitgates can be used to tune a double dot in a suspended semicon-
ducting carbon nanotube such that the electrons are in the (1,1) state, or in the (0,2)
state.

• Singlet-triplet splitting in a single dot in a carbon nanotube is about four orders of
magnitude smaller then the single particle level spacing ~ω0.

• The harmonic oscillator model has shown that the electrons will separate in order to
save Coulomb energy for a realistic potential in a 1D nanotube. The electrons form
what one might call a Wigner crystal. The shell filling model no longer applies in this
regime.

• The double dot can be tuned such that the inter dot coupling is much smaller then the
singlet-triplet splitting. A steeper potential results in a higher singlet-triplet splitting
and a smaller interdot coupling. The height of the barriers is limited by the bandgap.
Experimentally, the limit is set by the temperature T ∼ 25 mK and the time of the (1,1)
to (0,2) transition t ∼ 0.7 µs.

5.2 Recommendations

Regarding the code as developed, it is recommended to improve the user friendliness of
the simulation program. Although the main focus of this project has been on realistic carbon
nanotube devices, the code is also suitable for simple modeling of nanowire and 2DEG devices
using the Thomas-Fermi approximation1. This gives the code great potential to be used as
a simple program where a gate geometry and relevant parameters are given as input, and
electrostatic potential and electric field lines, charge distribution and capacitances are output,
such that the program can be used as a support in designing new devices.

In terms of the continuation of this project, one interesting subject that is recommended for
further research is the few electron regime. In this thesis, only results of exact diagonalization
for two electrons are presented. The Thomas-Fermi and Hartree approximations only make
sense for many electrons. Using exact diagonalization in a point basis, the exact solution of
the Schrödinger equation for maximal three electrons can be calculated on a modern personal
computer using a reasonable number of grid points. The reason for this maximum is the
scaling of the Hamiltonian which has dimensions LN × LN , where L is the number of grid
points, and N the number of electrons. A good and often used approximation to solve the
many body Schrödinger equation for this regime is the configuration interaction method.
In this approach, the Hamiltonian is written in a basis set of the Slater-determinants of
cleverly chosen basis functions [41]. It will be interesting to have a closer look at the charge
distribution for different number of electrons, and especially to find the electron number

1For detailed simulations of 2DEG and nanowire systems, a well developed program already exist [39,50,51],
and further improvement of the developed code on these subjects is therefore not recommended
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where the formation of a Wigner crystal occurs. One could think of performing the double
dot experiment with two electrons, while many underlying states are also filled. Configuration
interaction then covers the interaction between all electrons.

The developed code covers many relevant physics, but still more could be implemented.
Although the pre-factor of the spin orbit coupling is small, spin-orbit coupling can still be
strong due to the curvature of the nanotube [9, 52]. Another phenomena which we neglected
in this work is inter-valley mixing and inter-valley scattering. We assume that the degeneracy
is broken by a small magnetic field. Although full 3D self-consistent simulations are not per
se suitable to study these phenomena itself, the effects could also be included in the program.

Furthermore, we have assumed that the dielectric constant of the nanotube equals unity.
However, the polarizability is strongly dependent on the electronic structure of the nanotube
and does not equal one [53, 54]. How the 1D dielectric behavior should be modeled properly
in a 3D environment is at this point not clear. It does, however, mean that the Coulomb
interaction in the nanotube is smaller than assumed, resulting in a higher singlet-triplet
splitting.

Finally, from an experimental point of view, it is recommended to design a device where
the splitgates are close to each other. The splitgates used for the results of section 4.3 are
100 nm wide and separated by 100 nm. By decreasing the separation between the splitgates a
steeper potential can be realized, increasing the singlet-triplet splitting. However, the interdot
coupling is also increased and thus the barrier in between the two dots should be higher for
this case.
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Appendix A

Double dot potential and
wavefunctions

Typical double dot bare potential
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Figure A.1: Typical double dot potential. The cut of the 3D electrostatic potential along the nan-
otube gives the 1D confinement potential (left). Two electrons in the double dot see a 2D confinement
potential (right). (a) corresponds to the left dot and (b) to the right. (c) (right only), corresponds to
a superposition of the left and right dot.
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Figure A.2: Left: the S11 two-electron 2D wavefunction with corresponding charge distribution.
Right: the same for the T11 state. The charge distribution is equal for both states. The spatial
wavefunctions are equal except for a phase difference.
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Figure A.3: The S20 (left) and T20 (right) two-electron 2D wavefunction and charge distribution.
The singlet has a local minimum at x1 = x2, resulting in a very low energy difference between the
singlet and triplet state.
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Figure A.4: Mixing of the S11 state with the S20 state, calculated for the double dot with parameters
corresponding to the energy diagram from Fig. 4.15.c. The potential is tilted resulting in the transition
from S11 to S20.
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