Approximate Conversion | Exact value | Formula | Note |
1 uA = 300 pH | 318 pH | L_J = \Phi_0 / 2 pi I_C | Josephoson inductance |
1 GHz = 4 uV = 47 mK | 4.11 uV | E = h \nu | Frequency to energy conversion for EM radiation |
10 fF = 8 uV = 2 GHz | E = e^2 / 2 C | Charging energy | |
10 nA = 20 uV = 5 GHz | 2 uV | E_J = h/2e * Ic/2pi | Josephson Energy (careful about factors of two?...) |
1 K = 150 ueV | \Delta = 1.76 kTc | Superconducting gap as a function of Tc (Al = 1.2K) | |
10 kOhm = 230 nA | I_c = pi * Delta / 2 Rn | Ic Rn product for a junction with Tc = 10K | |
10 kOhm = 23 nA | I_c = pi * Delta / 2 Rn | Ic Rn product for a junction with Tc = 1K | |
100 uV = 1 K | 1.16 K (86 uV) | E = e / k_B | |
1 cm = 1 pF | 1.11 pF | C = 4 \pi \epsilon d | Self capacitance of a sphere to infinity |
100 aF = 0.80 mV | E = e^2 / 2 C | Charging energy | |
1 ns = 30 cm | 30 cm | d = c / t | Speed of light |
1 pF = 160 nV, 16 mV = 10 aF | V = q / C | Voltage on capacitor for a single electron | |
1 cm = 1 nH | Self inductance of wire per unit length? | ||
1V @ 100 nm = 0.5 x 10^11 e/cm^2 | 0.55 x 10^11 | Q/A = \epsilon V / d | Parallel plate capacitor, \epsilon = 1 |
1 T = 25.7 nm | l_B = (\hbar / eB)^1/2 | Magnetic Length | |
1 T = 2.42 x 10^10 cm^-2 | N_0 = 2eB/h | LL degeneracy (2D) | |
1 T = 20.0 K = 1.72 mV | \hbar e B / m* | Cyclotron Energy (m* = 0.067) | |
1 T = 0.29 K = 25 uV | g \mu_B B | Zeeman Splitting in GaAs | |
1 T = 50 K | e^2 / 4 \pi \eps l_B | Coulomb energy scale in QHE | |
1 mV = 3e10 e/cm^-2 | DOS of GaAs 2DEG (m = 0.067) | ||
0.48 mV = 1 e/um | 8 / 3 \pi \gamma_0 a_0 | DOS of a nanotube | |
100 nm = 10 uV | 9.28 uV | En = pi^2 hbar^2 n^2 / 8 m a^2 | 1D confinement energy for free electrons (n=1), hard wall L = 2a |
100 nm = 130 uV | 132.57 uV | En = pi^2 hbar^2 n^2 / 8 m a^2 | 1D confinement energy for electrons in GaAs (m = 0.07) (n=1) |
100 nm = 19.4 mV | E = hbar v_F / 2 | 1D confinement energy in a carbon nanotube | |
50 Ohm = 0.9 nV/rHz | v_n = sqrt(4kTR) | Johnson noise of a 50 ohm resistor at RT | |
1 nm = 0.2 mV/T | mu_orb = e v_F d / 4 | Orbital magnetic moment of a nanotube | |
1 nA = 2 uV = 23 mK | E_J = hbar Ic / 2e | Josephson energy | |
1 kOhm = 580 uV = 6.7 K | E_J = R_Q / 4 R_N * \Delta | E_J in terms of R_N for Aluminium (3.25 kOhms / R_N * \Delta) |
Superconducting gaps
Tc | Gap (\Delta = 3.5/2 Tc) | |
Al | 1.2K | 180 uV |
Re | 2.4K | 360 uV |
ReMo | 10K | 1.5 mV |
MgB2 | 35K | 5.2 mV |
Raman spectroscopy units
1 cm-1 = 124 uV |
1000 cm-1 = 124 mV |
Energy, frequency, time, and current
Energy | Frequency | Time | Temperature | Current | Magnetic Field (g=2) |
1 mV | 243 GHz | 4.11 ps | 11.6 K | 39.1 nA | 8.6 T |
1 mV | 200 GHz | 4 ps | 10 K | 40 nA | 10 T |
100 uV | 20 GHz | 40 ps | 1 K | 4 nA | 1 T |
10 uV | 2 GHz | 400 ps | 100 mK | 400 pA | 100 mT |
1 uV | 200 MHz | 4 ns | 10 mK | 40 pA | 10 mT |
0.1 uV | 20 MHz | 40 ns | 1 mK | 4 pA | 1 mT |
0.01 uV | 2 MHz | 400 ns | 0.1 mK | 400 fA | 100 uT |
0.001 uV | 200 kHz | 4 us | 0.01 mK | 40 fA | 10 uT |
1 pA = 6 MHz = 25 uV
Misc Stuff | |
1 mL lHe = 1 mW * hour | Latent heat of liquid helium |
1 L STP He = 2 mL liquid | |
Lattice density ~ 1e22 cm^3 | |
1bar = 14.5 psi | |
1L liq He = 26.73 cu ft STP = 757 L STP | |
1 cu ft = 28.31 L | |
1 hp = 750 W | |
1 ft = 30.48 cm | |
1 mbar = 101.3 Pa = 1 cm H20 | |
1 inch H20 = 2.5 mbar = | |
1 psi = 6.7 kPa = 66 mbar |
Constants | Value |
flux quantum h / 2e | |
h | 6.62 x 10^-34 J s |
hbar | 1.05 x 10^-34 J s |
resitance quantum e^2 / h | 25.812 kOhm |
Bohr magneton | 58 uV / T |