
Quantum transport in carbon
nanotubes



A mis padres, hermanos y Empar



Quantum transport in carbon
nanotubes

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 3 oktober 2005 om 15.30 uur

door

Pablo David JARILLO-HERRERO

Master of Science in Physics, University of California San Diego, USA

geboren te Valencia, Spain.



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. L. P. Kouwenhoven

Samenstelling van de promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. ir. L. P. Kouwenhoven Technische Universiteit Delft, promotor

Prof. dr. C. Dekker Technische Universiteit Delft

Prof. dr. C. M. Marcus Harvard University, Verenigde Staten

Prof. dr. Yu. V. Nazarov Technische Universiteit Delft

Prof. dr. H. W. M. Salemink Technische Universiteit Delft

Prof. dr. S. Tarucha Tokyo University, Japan

Dr. Silvano De Franceschi TASC National Laboratory, Italië
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Preface

When I first visited Delft for an interview in late March 2001, it was raining

and hailing. Temperatures during the day: 4◦C. Couldn’t believe it. I had just

arrived from sunny San Diego in southern California. Was I going to do my PhD

here? A ∼ 20 min lunch in the ‘Aula’ nearly threw myself back... Yet the group

seemed very nice and the physics very interesting. I decided to come and, looking

backwards, I definitely made the right choice.

This thesis describes experiments done during four years of research in the

Quantum Transport (QT) group at Delft University of Technology. Many people

have contributed both to my research and, very importantly, to the many good

moments in this important period of my life.

First of all I want to thank my advisor Leo Kouwenhoven. Thanks four your

enthusiasm and deep insight with science and for the freedom to explore whatever

I wanted, while at the same time encouraging me to focus on relevant experiments.

I admire your ability to choose the right people to form a very good group, with

a very informal atmosphere and where excellent research and personal life can

be perfectly combined. Thanks for those ‘very good Pablo’ every now and then,

and the responsibility and trust in sending me to important conferences.

I owe an especial acknowledgement to professor Seigo Tarucha, from the Uni-

versity of Tokyo, for providing, through the ERATO, SORST and ICORP pro-

grams, the funding for my salary and research. Domo arigato gozaimass!

This thesis would not have been possible without the help of many collabora-

tors. I want to thank you all for the exciting experience of working together these

years. I want to start by thanking Silvano De Franceschi, ‘Grandissimo Signore

dell’Italia’, a good friend and a true supervisor. Working with you in the mid part

of my PhD has had the strongest influence in shaping me as a young scientist.

I admire your profound knowledge of physics, your enthusiasm and capability to

work countless hours, and your patience and willingness to explain and discuss

science. I’ve enjoyed our multiple discussions on physics and non-physics issues

inside and outside the lab. I’m glad you finally admitted that the Spanish ‘Jamón

pata negra’ is better than the Italian ‘Prosciutto di Parma’. I will visit you soon

v



vi Preface

in Trieste! Sami Sapmaz, co-founder of the nanotube transport team, has been a

very important collaborator during my PhD. A lot of hard work, during the good

and the not so good times, has resulted in a strong nanotube research subgroup

within QT. It could not have occurred without you. Your many stories about

Turkey have definitely made me wish to visit it, I hope to go soon. Çok tesekkür

ederim!. The nanotube effort in Delft greatly benefitted with the arrival of Jing

Kong, the most efficient person fabricating I’ve ever met!. I have enjoyed very

much all the time we worked together in the lab. I’ve also learnt a lot from your

chemist (i.e., practical) approach to things. I appreciate very much your friend-

ship and I hope you can keep your sweet and cheerful personality in the wild MIT.

During the last months of my PhD I’ve had the pleasure of working very closely

with Jorden van Dam, a really nice and talented person. Pianist, politician, and

a great researcher (I could keep on...). Our multiple successful two-sample cool

downs have redefined the concept of ‘efficient dilution fridge use’ !. Jorden, be-

dankt voor alles. Herre van der Zant played an important role during the first

half of my PhD. Thanks for all the support and encouragement, especially when

things were not going so good, and thanks also for the confidence you showed

proposing me for talks abroad already early on. The close collaboration with the

group of Cees Dekker has been very important for my research. Cees, thanks

for the discussions, critical reading of papers, the usage of MB facilities, and

your good eye hiring people. The nanotube transport team has grown with the

incorporations of Carola Meyer (thanks for the lessons on German politics and

science!) and Piotr Beliczynski (a fan of Valencia and Spain!). I wish you all

the best with NT qubits! We have had several students in the team. I had the

pleasure to supervise Chris Lodewijk during his Masters project. I’m very glad

that your latter work got recently rewarded, and that you decided to keep on with

physics research. I’ve had also a nice time co-supervising or simply discussing

with Samir Etaki, Arjan van Loo, Jan-Willem Weber and Edoardo.

QT is world-wide recognized by its research output. But what less people

probably know is the phenomenal group atmosphere here, largely responsible in

fact for the former. I want to especially thank Hans Mooij as founder of what

I consider the ‘Mooij School’. I want to thank everybody in QT for making my

PhD time here so enjoyable, and especially: Leonid Gurevich, for introducing me

to the art of nanofabrication and all his help on various issues. My office mates

Gunther Lientschnig (well known for his characteristic laugh!), Michel Hendriks,

Franck Balestro (the Grenoblover), and Ethan Minot (I’m looking forward to join

the Q-optics team) for the nice atmosphere in B003!. Hubert Heersche (world

adventurer and QT-interieurverzorging), charming Wilfredillo van der Wiel (your

thesis has been almost a guide for my research), the three F’s: Floris Zwanen-
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burg (and his Renault Clio), Frank Koppens (spider-man) and the always friendly

Floor Paauw, Tristan Meunier (really funny French), Eugen Onac (with who I

shared the ‘joyful times’ of writing a thesis), Jeroen Elzerman (temporary guest

of the NT team), Laurens Willems van Beveren (BKV team mate), Alexander ter

Haar, Yong-Joo Doh for the discussions on SC, Dirk van der Mast for organizing

the QT boat-trip, easy going Christo Buizert, Pieter de Groot, Arend Zwaneveld,

Ivo Vink, Silvia and Josh Folk, Allard Katan (spider-man 2), Jonathan Eroms,

Patrice Bertet, Stefan Oberholzer, Ronald Hanson, Jelle Plantenberg, Adrian

Lupascu (future NEMS expert), Lieven Vandersypen (sailing master), Bart van

Lijen, Peter Hadley, who I could always ask basic physics questions, Kees Har-

mans (for the nice notes on mesoscopic physics), ex-Qter Ramón Aguado and all

other (ex-)members of QT I may have forgotten!.

Research at QT is greatly facilitated by the help from Raymond Schouten

(our electronics guru) and Bram van der Ende, alias ‘nightingale whistler’. I

also want to acknowledge the support of Mascha van Oossanen, Leo Dam, Wim

Schot, Willem den Braver and Leo Lander. Special thanks to always smiling Yuki

French for all the management work. Thanks also to Ria van Heeren for help

with housing issues and trips.

The excellent scientific research done in Delft is, of course, not only due to QT.

Among the groups I’ve had special interaction are the Molecular Biophysics group

of Cees Dekker and the Theory group led by Gerrit Bauer and Yuli Nazarov. I

want to thank past and present members of both groups for the nice discussions

and experimental help. At MB I particularly want to thank Henk Postma for

his experimental help at the very beginning of my PhD, Keith Williams for his

enthusiasm with nanotubes, Jeong-O Lee for her kindness and useful advices on

fabrication, Diego Krapf (a ver si nos volvemos a tomar un mate pronto), Serge

Lemay and Brian Leroy who can see nanotubes, Derek Stein (I still don’t think

the BBC is pro-government) and Gilles Gaudin and his sense of humour.

The theorists upstairs form a really nice group. I want to thank first of all

Yuli Nazarov for the many discussions on various aspects of mesoscopic physics.

I really admire your broad and deep physical insight, and your scientific honesty.

During the NEMS meetings I enjoyed discussions with Yaroslav Blanter and

Milena Grifoni. Special thanks to Joel Pëguiron for his hospitality in Regensburg,

and to Daniel Huertas, my first Spanish connection in Delft. I have also enjoyed

discussions and chats with Gerrit Bauer (the professor with the largest computer

display ever), Gabriele Campagnano ‘il napolitano’, Markus Kindermann, Omar

Usmani, Siggi Erlingsson and Oleg Jouravlev. I’ve also enjoyed very much the

enthusiastic lectures/talks from Carlo Beenakker, from Leiden University (he also

has a cool website!).
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I want to acknowledge all the personnel from DIMES for their superb job in

making the nanofacility in Delft an excellent (and safe) place for nanofabrication.

Special thanks to Emile van der Drift for his perseverance.

During my PhD I’ve had the opportunity to travel all around the world, visit

beautiful countries and meet many people. I want to thank some of them for

their warm hospitality. Professor Young Hee Lee and his students made my trip

to Korea a very interesting experience. I enjoyed very much my visit to Japan,

and the cordial hospitality of Abdou Hassanien and Madoka Tokumoto-san, from

AIST (giving a seminar about Kondo with Kondo-sensei in the audience was

certainly the highlight of the trip!). In the same trip I had the pleasure to visit

NTT basic research laboratories (what a fantastic place for nanoscience!), and

enjoyed the hospitality of Toshimasha Fujisawa. Hans Kuzmany, from University

of Vienna, was very kind to invite me both to a nice conference in Kirchberg and

to Vienna. Thanks also to Andrea Ferrari, for the invitation to visit Cambridge

University and the dinner at ‘High-Table’.

Here in Delft I’ve met many people whose friendship I appreciate very much.

Special thanks to Marta (thanks for being my paranimf!) and Stefan (a true

British, and I mean it as a compliment!), Fernando (and his famous ‘fabada

asturiana’), Paloma and her almost Spanish boyfriend, Luuk, Josep and Silvia,

Cesar (toledano de pura cepa), Javis and Elena (er trio cordobé), and many

other with whom I’ve also enjoyed the ‘Spanish lunches’ in the Aula (which soon

became international with the Erasmus crowd). I cannot forget my hurricane

friend Patricia and her never ending all-around-the-world stories.

The people who I love and love me most deserve special mention here. I want

to thank all my friends from Spain for their patience and not forgetting about

me after some many years abroad. Special thanks to Joaqúın Fernández, who

encouraged me to come to Delft for my PhD. My family have surely been the

ones to suffer most the difficulties associated with my scientific career. I would

certainly not be here without my parents, MariCarmen and Carlos: mamá, papá,

sé que ha sido especialmente dif́ıcil para vosotros. Gracias por vuestro apoyo y

confianza. My brothers Dani, Edu and Nacho also had to bear my being away for

such a long time. Os quiero mucho a los tres. Finally I want to thank the most

special person I found in my life: Empar. Thanks for all the time spent together,

for your continuous support and love. Mi pequeña molestoncilla. Te quiero.

Pablo Jarillo-Herrero

Delft, September 2005
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Chapter 1

Introduction

For a scientist working in mesoscopic physics, it is quite difficult to imagine a

‘world’ without quantum mechanics. Yet it’s not so long since Planck, Einstein,

Bohr, Schrödinger, Heisenberg or Dirac, among others, started the ‘Quantum

Revolution’. There is no doubt that the technology developed from our under-

standing of quantum mechanics has had a tremendous influence in the world and

the way we live: from geopolitics to entertainment, from economics to health,

and pretty much any aspect of life. Inventions like the transistor, the laser or

the atomic bomb, just to name a few, have changed our world in a way that few

people would have anticipated at the beginning of the 20th century. Some people

believe that we are at the beginning of another revolution. Much to the regret

of most physicists, this one may not be a conceptual revolution, like quantum

mechanics, but purely technological: nanotechnology. In fact, it could be just a

natural continuation of the technological revolution based on quantum mechanics.

If scientists and engineers really get to control matter at the level of individual

electrons or atoms, then the consequences for our world and the way we live will

be greater than even the most imaginative physicist of the 20th century would

have dreamed.

Nanoscience aims to study any phenomenon/object which occurs/exists at the

nanometer scale. It is one of the most rapidly developing scientific disciplines and

it has broken the traditional barriers separating physics, chemistry and biology.

This interdisciplinary character of nanoscience is often quoted as one of its most

important characteristics. Among the many objects being studied, carbon na-

notubes (CNTs) have emerged as the prototypical nanomaterial: their diameters

in the one to few nanometers range and their fantastic physical properties have

made them immensely popular and they have, without any doubt, contributed

very much to the nanotechnology ‘hype’.

1



2 Chapter 1. Introduction

Figure 1.1: Scanning tunneling microscope picture of a carbon nanotube. The scale
bar is 1 nm (from ref. [14]).

1.1 Motivation

When I visited the Quantum Transport group in Delft in the spring of 2001, I

was suggested to do a PhD on electronic transport through carbon nanotubes,

with emphasis on their electromechanical properties. Nanotubes were a very hot

topic of research at the time, but one could easily wonder wether the ‘crest of

the wave’ had already passed. After all, most of their basic electronic properties

had been well established during the late 90’s (the ‘golden years’ for nanotube

research) [1]. In fact, although I didn’t fully realize then, most of the people doing

nanotube research were about to leave Delft at that moment, and the group of

Cees Dekker, pioneer in the field and recently split from QT, was already moving

into other directions, such as biophysics. Nevertheless, partly motivated by the

amazing properties of nanotubes and partly naively, I embarked on this four-year

trip and became the first PhD student of what is now the nanotube transport

team in our group.

I immediately became fascinated with these objects: so tiny, so simple in

structure, yet how much beautiful physics can be explored with them. Carbon

nanotubes are tiny cylinders (of just few nm in diameter) made entirely out of

carbon atoms (Fig 1.1). Basically one can think of them as a rolled graphite

sheet (also known as graphene). They have lengths ranging from a few hundreds

of nanometers up to several centimeters [2] and they are one of the strongest,

yet lighter, materials on earth (approximately 5 times stronger than steel, yet 6

times lighter). Of particular interest are the electronic properties of CNTs. For

example, they can behave as metals or semiconductors depending on their so-

called ‘chirality’ (basically depending on how you roll the graphene sheet). They

can also withstand current densities as high as 1013 A/m2 (higher even than

superconductors) and can behave as ballistic conductors at room temperature.

But it is at low temperatures, in the ‘world of quantum mechanics’, that CNTs

exhibit their most intriguing behaviour.
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One of the most basic predictions of quantum mechanics is that a confined

object can only have a discrete set of energy states. A familiar example of this

are the electronic states in an atom. But this can also happen in solids. We call

such ‘artificial atoms’ quantum dots (QDs). It turns out that electrons in a short

segment of CNT, being confined in the three directions of space, have a discrete

energy spectrum, and thus CNTs behave also as QDs. In order to observe this

spectrum one needs to cool them down to temperatures below a few Kelvin, so

that the thermal energy is smaller than the energy level separation.

The Quantum Transport group had a long research tradition on quantum dots

(QDs) defined in semiconductor heterostructures, so it seemed natural to study

carbon nanotube quantum dots. This actually proved more difficult than ex-

pected. Previous experiments [3, 4] had already shown that QDs can be formed

in metallic CNTs, but their spectra, the most fundamental property of a QD,

were highly irregular and could not be understood. The band structure of metal-

lic CNTs is fairly simple, so verifying the predictions from theory was of funda-

mental importance to do more sophisticated experiments in CNT QDs. Some of

the problems to be studied were: i) what is the role of the double orbital de-

generacy in the transport properties of CNTs?; ii) is it possible to form QDs in

semiconducting carbon nanotubes and reach the few particle regime?; iii) how is

the transport modified when you attach different types of metals (superconduc-

tors, ferromagnets, etc...)?; iv) do the discrete phonon modes in finite size CNTs

play any role in the transport?; v) is it possible to create tunable tunnel barriers

in CNTs QDs?. Much progress has been done in most of these topics thanks to

the work of several research groups around the world. The nanotube team in

Delft has certainly contributed too and many of our results are contained in this

thesis. All in all, I can affirm that the research into CNT QDs has reached a

reasonable level of maturity, and there is no fundamental reason why CNTs can-

not be used for most of the experiments done or planned in QDs defined in other

systems, such as QDs in semiconductor heterostructures. In fact several groups

with strong tradition in QD research in semiconductors have started research

projects in nanotubes too.

1.2 Why keep on studying carbon nanotubes?

Much of the recent progress in nanotube research is due to improvements on the

quality of CNTs. This means that CNTs are now a much more reliable system

than they were before and there is a lot of fun physics to be explored with them.

I briefly describe here some of the areas were I think there will be significant
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Figure 1.2: a, Atomic force microscope picture of a carbon nanotube double quantum
dot. b, Current through a CNT double QD, at finite bias, as a function of each dot’s
side gate. The discrete lines correspond to transitions between the different electronic
states in each dot. ([15]).

progress in the near future.

One ‘traditional’ advantage of QDs in semiconductor heterostructures over

those in nanotubes is that the tunnel barriers that confine electrons in the dot

can be tuned in situ. This enables to explore different experimental regimes by

varying the coupling between the dot and the leads, and also to design novel

geometries where multiple quantum dots are involved. It has recently been re-

ported [5] that tunable tunnel barriers can be introduced in CNTs too, and several

groups have been able to create, for example, double quantum dots (see Fig 1.2).

I foresee many exciting results stemming from this area of research. One of them,

for example, is the measurement of the spin and orbital relaxation times in CNT

QDs. In semiconductor QDs, the orbital relaxation time has been measured to

be of order ∼ few ns [6], limited mainly by phonon emission. The spin relaxation

time, on the other hand is much longer, of order ∼ 100µs [6], and limited by

spin-orbit interaction. In CNT QDs these times have not been measured, but

there is great hope that they will be long. On one hand, most of the phonon

modes in CNTs have very large energies [7], so the probablity of relaxation due

to phonon emission will be low. This will lead to an increased orbital relaxation

time. On the other, carbon is a light element, so the spin-orbit interaction is very

weak, and this will also lead to very long spin relaxation times. Moreover, it has

recently been shown that the interaction of the electron spin with the nuclear

spins leads to a very short decoherence time in QDs defined in GaAs [8]. In
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carbon nanotubes, most of the carbon is 12C (with zero nuclear spin magnetic

moment). In principle, pure 12C nanotubes can be grown by using isotopically

pure gases. Therefore, one can expect electrons in CNTs to have long spin de-

coherence times. Another interesting experiment is to measure the spontaneous

emission spectrum of a double QD [9] in a CNT. This will tell us information

about phonon-mediated relaxation processes in CNT QDs.

An area of CNT research which is advancing very rapidly in recent years is

the optical and optoelectronic properties of CNTs. Both photoluminescence [10]

and electroluminescence [11] from individual semiconducting nanotubes has been

measured. In principle, photoluminescence measurements enable the determina-

tion of the chirality of the nanotube being studied [12]. Recent measurements,

however, have shown that the measured photoluminescence energies don’t corre-

spond to the true band gap of the nanotube, but are much smaller due to very

strong exciton binding energies in CNTs [13]. This in itself is already very inter-

esting and opens the door to many experiments. A good way to check this strong

excitonic effects would be to combine low temperature electronic transport ex-

periments, where the single particle band gap can be accurately measured, with

photoluminescence measurements on the same nanotube, to measure the optical

gap. Furthermore, by using short carbon nanotubes, one would be able to study

photoluminescence from individual QD states in the valence and conduction band

of CNTs, and thus perform similar studies to those done in self-assembled QDs

or nanocrystals. Of course, these band gaps are tunable, by means of a magnetic

field, for example, but also by means of strain. In addition, controlling the nan-

otube diameter also enables to have QD emitters with very different wavelengths.

All in all, you don’t have to think too hard to find interesting experiments

to be done with carbon nanotubes. Their properties are so unique, that there

are almost endless opportunities to explore physics with them. Surely a big wave

passed in the late 90’s, but we’ll be able to ‘surf’ still for many years.
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Chapter 2

Basic theoretical concepts and device

fabrication

2.1 Carbon nanotubes

Carbon nanotubes (CNTs) are thin hollow cylinders made entirely out of car-

bon atoms. There are many types of cabon nanotubes and carbon nanotube-like

structures. The most basic ones are two: multiwall nanotubes (with diameters,

d, of order ∼ 10 nm) and single wall nanotubes (d ∼1 nm) (see Fig. 2.1). Mul-

tiwall carbon nanotubes were discovered by Japanese scientist Sumio Iijima in

1991 [1] and, two years later, individual single wall carbon nanotubes were re-

ported [2, 3]. Immediately after their discovery, it became clear that these tiny

objects would have very remarkable electronic properties [4, 5]. Still, it was not

until 1997 that the first electronic transport measurements on carbon nanotubes

were performed [6, 7], thanks by a large part to a new growth method devel-

oped by the group of R. Smalley that enabled the production of large amounts

of carbon nanotube material [8]. Since then, the number of groups working on

the electronic properties of carbon nanotubes has increased dramatically.

Constructing a carbon nanotube

Carbon nanotubes have cylindrical structure and can be thought off as a rolled

graphene sheet (graphene, a single sheet of graphite, is a honey-comb lattice of

covalently bonded carbon atoms, see Fig. 2.2). There are many ways to roll a

graphene sheet to form a CNT, so there are, in principle, an infinite amount of

CNTs (if you allow the diameter to be as large as you want). One of the most

interesting properties of CNTs is that the orientation of a carbon nanotube’s axis

with respect to the graphene crystal axes influences very strongly its electronic

7
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Figure 2.1: Discovery of carbon nanotubes. Left: Transmission electron microscope
pictures of a multiwall nanotube (top) and an individual single wall nanotube (bottom)
(from refs. [1, 2]). Right: Sumio Iijima, discoverer of carbon nanotubes.

behaviour. In particular, as we will see, CNTs can behave as semiconductors or

as metals.

The geometry of a CNT is described by a wrapping vector. The wrapping

vector encircles the waist of a CNT so that the tip of the vector meets its own

tail. One possible wrapping vector,C, is shown in Fig. 2.2. In this example, the

shaded area of graphene will be rolled into the NT. The wrapping vector can be

any C=na1+ma2, where n and m are integers and a1 and a2 are the unit vectors

of the graphene lattice. The angle between the wrapping vector and the lattice

vector a1 is called the chiral angle of a NT. The pair of indexes (n,m) identifies

the nanotube and each (n,m) pair corresponds to a specific chiral angle, θ, and

diameter d:

θ = arctan[
√

3m/(m + 2n)] (2.1)

d = C/π =
a

π

√
n2 + m2 + nm (2.2)

where a = |ai| (∼ 0.25 nm) is the lattice constant. A nanotube whose (n,m)

indices are (12, 6), for example, will have then a diameter d = 1.24 nm and

a chiral angle θ of 19.1◦. Vector T is perpendicular to C and it points from

(0,0) to the first lattice site through which the dashed line passes exactly. The

area defined by |T×C| is the primitive unit cell from which a nanotube can be

constructed.

There are two special directions in the graphene lattice that generate non-

chiral tubes. These correspond to the (n, 0) and (n, n) lines in Fig. 2.2 and are
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a1

a2

θ
zigzag
(n,0)

C

T

(4,2)

armchair
(n,n)

(0,0)

Figure 2.2: Construction of a carbon nanotube from a graphene sheet. By wrapping
C onto itself, a CNT is generated with axis parallel to T. The grey area becomes the
CNT. Any CNT, characterized by indexes (n,m), can be constructed in a similar way.
In this case, it is a (4,2) NT. a1 and a2 are the unit vectors of the graphene lattice.
Nanotubes constructed along the zigzag and armchair dashed lines are non-chiral.

Figure 2.3: Examples of carbon nanotube geometries. From top to bottom: armchair,
zigzag and a chiral nanotube.

called zigzag and armchair directions, respectively. They differ by a chiral angle

of 30◦. Figure 2.3 shows examples of an armchair, a zigzag and a chiral nanotube.

Graphene band structure

The electronic structure of carbon nanotubes can be derived from the band

structure of graphene, which we describe here.
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Figure 2.4: a, Real space atomic lattice of graphene. b, Reciprocal space lattice. In
both cases the dashed lines denote the unit cells. The unit vectors satisfy ai·bj = 2πδi,j .

A graphene sheet consists of a two-dimensional array of carbon atoms arranged

in an hexagonal lattice. Each carbon atom in graphene is covalently bonded to

other three atoms, with which it shares one electron forming sp2 ‘σ-bonds’. The

fourth valence electron of carbon occupies a pZ orbital. The pZ states mix to-

gether (‘π-bonds’) forming delocalized electron states with a range of energies

that includes the Fermi energy. These states are responsible for the electrical

conductivity of graphene.

The real space geometry of graphene (a triangular Bravais lattice with a two-

atom basis) is shown in Fig. 2.4a. There are two inequivalent sites in the hexag-

onal carbon lattice, labelled A and B. All other lattice sites can be mapped onto

these two by a suitable translation using vectors a1 and a2. The real space unit

cell contains the two carbon atoms at A and B. Figure 2.4b shows the reciprocal

space lattice, with the corresponding reciprocal space vectors and first Brillouin

zone. P. R. Wallace calculated the band structure of graphene within a tight-

binding approximation in 1947 [9]. Rather than giving here the explicit formula

for the graphene band structure, and derive mathematically from it the band

structure of carbon nanotubes (see, e.g., [10]), we will simply try to ‘visually’

understand the basic electronic properties of CNTs from the band structure of

graphene.

The energy relation dispersion for grahene, E(kx, ky), is plotted in Fig. 2.5a.

Valence and conduction bands ‘touch’ each other at six points, which coincide

with the corners of the hexagonal Brillouin zone. The Fermi surface reduces thus

just to these six points. Because of this, graphene is called a semimetal, or zero

band gap semiconductor. These special points, where conduction and valence

bands meet, are called ‘K points’. The dispersion relation near these points

is conical. Figure 2.5b shows a contour plot of the energy of the valence band
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a b

Figure 2.5: Graphene band structure. a, Energy dispersion relation for graphene.
The valence (VB) and conduction (CB) bands meet at six points at the Fermi energy,
EF . b, Contour-plot of the valence band states energies in a (darker indicates lower
energy). The hexagon formed by the six K points (white contour points) defines the
first Brillouin zone of the graphene band structure. Outside this unit cell, the band
structure repeats itself. The two inequivalent points, K1 and K2 are indicated by
arrows (adapted from ref. [11]).

states. The circular contours around the K points reflects the conical shape of the

dispersion relation around them. Only two of the six K-points are inequivalent

(resulting from the two inequivalent atom sites of the graphene lattice), labelled

K1 and K2 = -K1. In Fig. 2.5b, the lower two K-points on the hexagon sides can

be reached from K1 by a suitable reciprocal lattice vector translation, so they are

equivalent to K1. Similarly, the two upper K-points are equivalent to K2.

The electronic properties of a conductor are determined by the electrons near

the Fermi energy. Therefore the shape and position of the dispersion cones near

the K points is of fundamental importance in understanding electronic trans-

port in graphene, and therefore in nanotubes. The two K points, K1 and K2

in Fig. 2.5b have coordinates (kx, ky) = (0,±4π/3a). The slope of the cones is

(
√

3/2)γoa, where γo ∼ 2.7 eV is the energy overlap integral between nearest

neighbor carbon atoms [12].

Band structure of carbon nanotubes

The band structure of carbon nanotubes can be derived from that of graphene

by imposing appropriate boundary conditions along the nanotube circumference.
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Figure 2.6: Quantized one-dimesional (1D) subbands. a, CNT and direction of k-axis.
b, Low-energy band structure of graphene (near EF ), showing the one-dimensional
subbands of CNTs obtained by imposing periodic boundary conditions along the NT
circumference (adapted from [11].

Typically, the diameters of carbon nanotubes (∼ few nm) are much smaller than

their lengths (anywhere from hundreds of nm to several cm). This implies that

there is a very large difference in the spacing between the quantized values of

the wavevectors in the directions perpendicular, k⊥, and parallel, k||, to the tube

axis. In this section, we will regard k|| to be effectively continuous (infinitely

long NTs) and consider only the quantization effects due to the small diameter of

NTs (section 2.3 will cover the quantum effects associated to finite length CNTs,

which constitute the actual subject of this thesis).

By imposing periodic boundary conditions around the NT circumference we

obtain the allowed values of k⊥:

C · k = πdk⊥ = 2πj (2.3)

where d is the NT diameter and j is an integer number. The small diameter

of CNTs makes the spacing in k⊥ to be rather large (∆k⊥ = 2/d), resulting in

strong observable effects even at room temperature. The quantization of k⊥ leads

to a set of 1-dimensional subbands in the longitudinal direction (intersection of

vertical planes parallel to k|| with the band structure of graphene). These are

shown in Fig. 2.6b. The electronic states closest to the Fermi energy lie in the

subbands closest to the K points. One of the most remarkable properties of
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Figure 2.7: Low energy band diagrams for carbon nanotubes around the K1 point. a,
For p = 0, there is an allowed value of k⊥ whose subband passes through K1, resulting
in a metallic nanotube and band structure. b, For p = 1, the closest subband to K1

misses it by ∆k⊥ = 2/3d, resulting in a semiconducting nanotube with band gap Eg.
In both figures, EF refers to the value of the Fermi energy in graphene.

CNTs becomes apparent now: if a subband passes exactly through the middle

of a dispersion cone, then the nanotube will be metallic. If not, then there will

be an energy gap between valence and conduction bands and the nanotube will

be a semiconductor. To first approximation, all nanotubes fall into one of these

categories: either they are metallic or semiconductors. In fact, for a given (n,m)

nanotube, we can calculate n −m = 3q + p, where q is an integer and p is -1, 0

or +1 [13]. If p = 0, then there is an allowed value of k⊥ that intercepts the K

points, and the nanotube is metallic. The slope of the dispersion cones gives the

Fermi velocity in metallic nanotubes: dE/dk = ~vF , with vF ∼ 8 · 105 m/s [14].

For p = ±1, there is no allowed value of k⊥ intercepting the K points, resulting

then in a semiconducting nanotube (see Fig. 2.7). The closest k⊥ to the K points

misses them by ∆k⊥ = ±2/3d, for p = ±1, respectively. This means that the

value of the band gap is: Eg = 2(dE/dk)∆k⊥ = 2γoa/(
√

3d) ∼ 0.8 eV/d[nm],

independent of chiral angle. Of all carbon nanotubes, approximately 1/3 are

metallic and 2/3 are semiconducting (see Fig. 2.8).

It is quite remarkable that carbon nanotubes can be metallic or semicon-

ducting depending on chirality and diameter, despite the fact that there is no
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Figure 2.8: Possible nanotube wrapping vectors, characterized by (n,m), with n >

m. Black dots indicate semiconducting nanotubes and circled dots indicate metallic
nanotubes (from ref. [13]).

difference in the local chemical bonding between the carbon atoms in the differ-

ent tubes. This fact results from an elegant combination of quantum mechanics

and the peculiar band structure of graphene.

Remarks on the band structure of carbon nanotubes

In the previous section we have seen how the band structure of CNTs can be

derived from the band structure of graphene. Here we would like to emphasize

some aspects of the CNT band structure which will be especially relevant for the

experiments described in this thesis.

The low energy band structure of carbon nanotubes is doubly degenerate

(at zero magnetic field). By this we mean that at a given energy there are

two different orbital electronic states that can contribute to transport (there

is also an additional two-fold degeneracy due to spin). This degeneracy has

been interpreted in a semiclassical fashion as the degeneracy between clockwise

(CW) and counter-clockwise (CCW) propagating electrons along the nanotube

circumference [15]. Within this picture, CW and CCW electrons in CNTs have

opposite classical magnetic moments associated with them, which, in the absence

of a magnetic field, are degenerate (also opposite spin states are degenerate at
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zero magnetic field). This orbital degeneracy plays a fundamental role in the

transport properties of carbon nanotubes, as we will show in chapters 4 to 6.

In the presence of a magnetic field parallel to the NT axis, B||, the quantization

condition (eq. 2.3) is modified:

C · k + 2πΦ/Φo = 2πj (2.4)

where 2πΦ/Φo is the Aharonov-Bohm phase acquired by the electrons while trav-

elling around the nanotube circumference (Φ = B||πd2/4 is the magnetic flux

threading the tube and Φo = h/e is the flux quantum). This means that the

allowed k⊥ values are displaced with respect to their original positions by an

amount k⊥(B||) − k⊥(B|| = 0) = πeB||d/2h. This has very profound conse-

quences for the electronic properties of nanotubes. Let’s consider first the case

of a metallic nanotube, for which the subbands pass through the cone vertices

at zero field (Fig. 2.9a). The effect of B|| is to shift the subbands away from the

cone vertices, thus opening a bandgap (Fig. 2.9b). So we can transform a metallic

nanotube into a semiconducting nanotube by means of a magnetic field, and back

to a metallic nanotube once Φ = Φo. This is a very remarkable consequence of the

quantum properties of carbon nanotubes. The magnetic field necessary to com-

plete the whole cycle is very large for a small diameter nanotube (∼ 5300 T for

d = 1 nm), but it is accessible in the case of large multiwall nanotubes (B|| ∼ 8T

for d ∼ 25 nm), as it has been recently shown [16]. Note that a finite B|| doesn’t

break the subband degeneracy for metallic NTs, since the two subbands passing

through the K1 and K2 points shift in the same direction.

The case of semiconducting nanotubes is perhaps more intriguing. Since K2

= -K1, the two lowest energy orbital subbands are on opposite sides of the cones

at K1 and K2 (Fig. 2.9c). Because B|| shifts both subbands in the same direction,

one subband gets closer to the K2 point, and its band gap decreases, while the

other subband shifts away from the K1 point, thereby increasing its band gap

(Fig. 2.9d). The magnitude of this band gap change can be easily calculated:

∣∣∣∣
dEg

dB||

∣∣∣∣ = 2
dEg

dk⊥

dk⊥
dB||

= 2~vF
dk⊥
dB||

= 2
evF d

4
(2.5)

which is about 0.4 meV/T for d = 1 nm. This band gap change is small compared

to typical band gaps of nanotubes (∼ hundreds of meV), but it is quite large

compared to other energy scales routinely observed in low temperature transport

experiments, such as the Zeeman splitting (∼ 0.11 meV/T for g-factor g = 2).
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Figure 2.9: Changes in the nanotube band structure by an applied parallel magnetic
field, B|| (see main text). The vertical lines represent allowed k⊥ values intercepting
the dispersion cones at K1 and K2. a, b, A metallic nanotube is transformed into a
semiconducting nanotube. c, d, Subband splitting in a semiconducting nanotube.

The subband splitting can be thought off as an orbital splitting due to elec-

trons with opposite orbital magnetic moments, analogous to the Zeeman splitting

for electrons with opposite spin magnetic moment. The quantity evF d/4 corre-
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sponds to the orbital magnetic moment of an electron moving in a circumference

of diameter d at a speed vF [15]. Eventually, by increasing B||, we can con-

vert a semiconducting nanotube into a metallic one (although this time only one

subband will be metallic). The consequences of a parallel magnetic field on the

transport through small band gap semiconducting NTs has been recently studied

by Minot and coworkers [15]. In chapters 5 and 6 we too investigate these orbital

magnetic effects and find that the interplay between the orbital magnetic moment

and the spin magnetic moment gives rise to very interesting physics.

One last aspect of the nanotube band structure that we want to comment

on relates to the classification of nanotubes as metals and semiconductors. We

have already mentioned in the previous paragraph ‘small band gap nanotubes’.

What do we mean by this? It turns out that not all metallic nanotubes are

true metals. Some nanotubes which are metallic according to the quantization of

the graphene band structure mentioned before, actually become small band gap

semiconductors when a more realistic model is taken into account. This band gap

(typically ∼ tens of meV) is small compared to the usual NT band gaps (∼ eV),

and has a smaller effect on the NT conductance properties at room temperature.

These small band gaps can be intrinsic, such as curvature induced [17, 18] or inter-

shell interactions in multiwall tubes [19], or be due to external perturbations,

such as axial strain [20, 21] or twist [22]. While these small band gaps are often

found in transport experiments [23, 15], it is in practice quite difficult to precisely

determine their origin. Nevertheless, small band gap nanotubes can be very useful

to study the magnetic effects mentioned above, because the degeneracy between

the orbital subbands survives even in the presence of these perturbations.

2.2 Quantum dots

Quantum dots are essentially ‘small’ structures with a discrete set of ‘zero-

dimensional’ energy states where we can place electrons. Now, quantum me-

chanics tells us that electrons in a finite size object have a discrete energy spec-

trum, so, in an experiment, a small structure behaves like a quantum dot (QD)

if the separation between the energy levels is observable at the temperature we

are working at. For most nanostructures this involves working at temperatures

below a few Kelvin. Of course the lifetime of the energy levels must be long

enough to be able to observe them too, and this means that the electrons must

be (at least partially) confined. Because a quantum dot is such a general kind

of system, there exist QDs of many different sizes and materials: for instance

single molecules, metallic nanoparticles, semiconductor self-assembled quantum



18 Chapter 2. Basic theoretical concepts and device fabrication
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Figure 2.10: Schematic picture of a quantum dot. The quantum dot (represented
by a disk) is connected to source and drain contacts via tunnel barriers, allowing the
current through the device, I, to be measured in response to a bias voltage, VSD and
a gate voltage, Vg.

dots and nanocrystals, lateral or vertical dots in semiconductor heterostructures,

semiconducting nanowires or carbon nanotubes. Quantum dots are mostly stud-

ied by means of optical spectroscopy or electronic transport techniques. In this

thesis we have used the latter to study quantum dots defined in short segments

of carbon nanotubes. But before discussing CNT QDs, we present here a general

description of electronic transport through quantum dots.

In order to measure electronic transport through a quantum dot, this must be

attached to a source and drain reservoirs, with which particles can be exchanged.

(see Fig. 2.10). By attaching current and voltage probes to these reservoirs,

we can measure the electronic properties of the dot. The QD is also coupled

capacitively to one or more ‘gate’ electrodes, which can be used to tune the

electrostatic potential of the dot with respect to the reservoirs.

A simple, yet very useful model to understand electronic transport through

QDs is the constant interaction (CI) model [24]. This model makes two important

assumptions. First, the Coulomb interactions among electrons in the dot are

captured by a single constant capacitance, C. This is the total capacitance to

the outside world, i.e. C = CS + CD + Cg, where CS is the capacitance to the

source, CD that to the drain, and Cg to the gate. Second, the discrete energy

spectrum is independent of the number of electrons on the dot. Under these

assumptions the total energy of a N -electron dot with the source-drain voltage,

VSD, applied to the source (and the drain grounded), is given by

U(N) =
[−|e|(N −N0) + CSVSD + CgVg]

2

2C
+

N∑
n=1

En(B) (2.6)
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Figure 2.11: Schematic diagrams of the electrochemical potential of the quantum dot
for different electron numbers. a, No level falls within the bias window between µS and
µD, so the electron number is fixed at N − 1 due to Coulomb blockade. b, The µ(N)
level is aligned, so the number of electrons can alternate between N and N−1, resulting
in a single-electron tunneling current. The magnitude of the current depends on the
tunnel rate between the dot and the reservoir on the left, ΓL, and on the right, ΓR. c,
Both the ground-state transition between N − 1 and N electrons (black line), as well
as the transition to an N -electron excited state (gray line) fall within the bias window
and can thus be used for transport (though not at the same time, due to Coulomb
blockade). This results in a current that is different from the situation in b. d, The
bias window is so large that the number of electrons can alternate between N − 1, N

and N + 1, i.e. two electrons can tunnel onto the dot at the same time.

where −|e| is the electron charge and N0 the number of electrons in the dot

at zero gate voltage. The terms CSVSD and CgVg can change continuously and

represent the charge on the dot that is induced by the bias voltage (through

the capacitance CS) and by the gate voltage Vg (through the capacitance Cg),

respectively. The last term of Eq. 2.6 is a sum over the occupied single-particle

energy levels En(B), which are separated by an energy ∆En = En−En−1. These

energy levels depend on the characteristics of the confinement potential. Note

that, within the CI model, only these single-particle states depend on magnetic

field, B.

To describe transport experiments, it is often more convenient to use the

electrochemical potential, µ. This is defined as the minimum energy required to

add an electron to the quantum dot:

µ(N) ≡ U(N)− U(N − 1) =

= (N −N0 − 1

2
)EC − EC

|e| (CSVSD + CgVg) + EN (2.7)

where EC = e2/C is the charging energy. The electrochemical potential for

different electron numbers N is shown in Fig. 2.11a. The discrete levels are

spaced by the so-called addition energy, Eadd(N):
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Eadd(N) = µ(N + 1)− µ(N) = EC + ∆E. (2.8)

The addition energy consists of a purely electrostatic part, the charging energy

EC , plus the energy spacing between two discrete quantum levels, ∆E. Note

that ∆E can be zero, when two consecutive electrons are added to the same

spin-degenerate level or if there are additional degeneracies present. Of course,

for transport to occur, energy conservation needs to be satisfied. This is the case

when an electrochemical potential level lies within the ‘bias window’ between

the electrochemical potential (Fermi energy) of the source (µS) and the drain

(µD), i.e. µS ≥ µ ≥ µD with −|e|VSD = µS − µD. Only then can an electron

tunnel from the source onto the dot, and then tunnel off to the drain without

losing or gaining energy. The important point to realize is that since the dot is

very small, it has a very small capacitance and therefore a large charging energy

– for typical dots EC ≈ a few meV. If the electrochemical potential levels are

as shown in Fig. 2.11a, this energy is not available (at low temperatures and

small bias voltage). So, the number of electrons on the dot remains fixed and

no current flows through the dot. This is known as Coulomb blockade. The

charging energy becomes important when it exceeds the thermal energy, kBT ,

and when the barriers are sufficiently opaque such that the electrons are located

either in the reservoirs or in the dot. The latter condition implies that quantum

fluctuations in the number of electrons on the dot must be sufficiently small. A

lower bound for the tunnel resistances Rt of the barriers can be found from the

Heisenberg uncertainty principle. The typical time ∆t to charge or discharge the

dot is given by the RC-time. This yields ∆E∆t = (e2/C)RtC > h. Hence, Rt

should be much larger than the quantum resistance h/e2 to sufficiently reduce

the uncertainty in the energy.

It turns out that there are many ways to lift the Coulomb blockade. First, we

can change the voltage applied to the gate electrode. This changes the electrosta-

tic potential of the dot with respect to that of the reservoirs, shifting the whole

‘ladder’ of electrochemical potential levels up or down. When a level falls within

the bias window, the current through the device is switched on. In Fig. 2.11b

µ(N) is aligned, so the electron number alternates between N − 1 and N . This

means that the Nth electron can tunnel onto the dot from the source, but only

after it tunnels off to the drain can another electron come onto the dot again

from the source. This cycle is known as single-electron tunneling.

By sweeping the gate voltage and measuring the current, we obtain a trace as

shown in Fig. 2.12a. At the positions of the peaks, an electrochemical potential

level is aligned with the source and drain and a single-electron tunneling current
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flows. In the valleys between the peaks, the number of electrons on the dot is

fixed due to Coulomb blockade. By tuning the gate voltage from one valley to

the next one, the number of electrons on the dot can be precisely controlled.

The distance between the peaks corresponds to EC +∆E, and can therefore give

information about the energy spectrum of the dot.

A second way to lift Coulomb blockade is by changing the source-drain voltage,

VSD (see Fig. 2.11c). (In general, we keep the drain potential fixed, and change

only the source potential.) This increases the bias window and also ‘drags’ the

electrochemical potential of the dot along, due to the capacitive coupling to the

source. Again, a current can flow only when an electrochemical potential level

falls within the bias window. By increasing VSD until both the ground state as

well as an excited state transition fall within the bias window, an electron can

choose to tunnel not only through the ground state, but also through an excited

state of the N -electron dot. This is visible as a change in the total current. In

this way, we can perform excited-state spectroscopy.

Usually, we measure the current or differential conductance while sweeping

the bias voltage, for a series of different values of the gate voltage. Such a

measurement is shown schematically in Fig. 2.12b. Inside the diamond-shaped

region, the number of electrons is fixed due to Coulomb blockade, and no current

flows. Outside the diamonds, Coulomb blockade is lifted and single-electron

tunneling can take place (or for larger bias voltages even double-elecron tunneling

is possible, see Fig. 2.11d). Excited states are revealed as changes in the current,

i.e. as peaks or dips in the differential conductance. From such a ‘Coulomb
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Figure 2.12: Transport through a quantum dot. a, Coulomb peaks in current versus
gate voltage in the linear-response regime. b, Coulomb diamonds in differential conduc-
tance, dI/dVSD, versus VSD and Vg, up to large bias. The edges of the diamond-shaped
regions (black) correspond to the onset of current. Diagonal lines emanating from the
diamonds (gray) indicate the onset of transport through excited states.
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diamond’ the excited-state energy as well as the charging energy can be read off

directly.

The simple model described above explains successfully how quantization of

charge and energy leads to effects like Coulomb blockade and Coulomb oscil-

lations. Nevertheless, it is too simplified in many respects. For instance, the

model considers only first-order tunneling processes, in which an electron tunnels

first from one reservoir onto the dot, and then from the dot to the other reser-

voir. But when the tunnel rate between the dot and the leads, Γ, is increased,

higher-order tunneling via virtual intermediate states becomes important. Such

processes, which are known as ‘cotunneling’, can be very useful in performing de-

tailed spectroscopy, as shown in chapter 5, for example. Furthermore, the simple

model does not take into account the spin of the electrons, thereby excluding for

instance exchange effects. Also the Kondo effect, an interaction between the spin

on the dot and the spins of the electrons in the reservoir, cannot be accounted

for. A special type of Kondo effect is explored in chapter 6.

2.3 Carbon nanotube quantum dots

In section 2.1 we described the basic electronic properties of infinitely long nan-

otubes. Due to the quantization of momentum in the transversal direction, CNTs

are usually treated as 1D objects. In an actual experiment, however, we measure

NTs of finite length and, we can expect therefore that quantum effects associated

with this finite length will be observable if we measure short enough NTs and

cool them to sufficiently low temperature. Under these conditions, the 0D nature

of the NT electronic states will be evident and CNTs will behave as quantum

dots.

When two metallic electrodes are deposited on top of a CNT, tunnel barriers

develop naturally at the NT-metal interfaces. The separation between the elec-

trodes, L, determines then the QD length (see Fig. 2.13). A finite L results in

quantized energy levels in the longitudinal direction, with an energy level separa-

tion ∆E. The strength of the NT-metal tunnel barriers determines the degree of

confinement of electrons in the NT QD. For very opaque barriers, the tunnel rate

between the QD and the reservoirs, Γ, is very small, resulting in a large lifetime

of the electrons in the QD (or small energy broadening). If the barriers become

more transparent (i.e., more transmissive), the energy levels get ‘Γ-broadened’.

For any QD, hΓ < ∆E, in order to be able to observe clearly the discreteness

of the energy spectrum. Depending on the ratio between the lifetime broadening

and the charging energy, we can distinguish three different QD regimes (with
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Figure 2.13: Schematic picture of a carbon nanotube quantum dot. Two metal elec-
trodes, source (S) and drain (D), separated by a distance L are deposited on top of the
tube. The QD is formed in the segment of nanotube in between the electrodes, leading
to a quantized energy spectrum in the longitudinal direction. The NT is capacitatively
coupled to a gate electrode (usually the back gate plane of the silicon substrate).

different typical phenomena associated with them):

1. hΓ ¿ EC (Closed QD regime)−→ Charging effects dominate transport

(Coulomb blockade).

2. hΓ ≤ EC (Intermediate transparency regime) −→ Charging effects impor-

tant, but higher-order tunneling processes significant too (cotunneling and

Kondo effect).

3. hΓ À EC (Open QD regime)−→ Quantum interference of non-interacting

electrons (Fabry-Perot like interference).

The experiments described in this thesis explore these three regimes (chap-

ters 3 and 8, 5 and 6, and 7, respectively).

The coupling between the NT and the metal leads depends on the contact

material, NT diameter and metallic/semiconducting character of the NT. Certain

materials, such as Ti or Au, make (generally) good contact to nanotubes (espe-

cially metallic ones). Others, like Al make pretty bad contact. It has recently

been shown that Pd and Rh are very good materials to contact NTs [25, 26, 27].

The larger the diameter, the lower the contact resistance is (on average). It is

also easier to contact metallic NTs than semiconducting ones because the latter

typically develop a Schottky barrier at the NT-metal interface. Despite these

guidelines, it is still not possible to obtain a desired contact resistance when de-

positing metal on top of a CNT. Usually a number of NT devices are fabricated



24 Chapter 2. Basic theoretical concepts and device fabrication

on a chip and we choose among them depending on the type of experiment to be

performed.

If we assume hard wall boundary conditions, then the quantized values of the

wavevector in the longitudinal direction, k||, are separated by ∆k|| = π/L. In the

case of metallic nanotubes this leads to an energy level spacing, ∆E, given by

∆E =
dE

dK||
∆k|| =

hvF

2L
(2.9)

It turns out that due to the high Fermi velocity in metallic CNTs, ∆E is

actually quite large (∆E ∼ 1.7 meV/L[µm]), and, for typical L (∼ few hundreds

of nm), the quantum behaviour of CNTs can be observed even at temperatures

of a few K. Another interesting consequence of eq. 2.9 is that the energy level

spacing in CNT QDs is constant, i.e., independent of the number of electrons, N .

This doesn’t occur in other types of QDs, such as those defined in 2-dimensional

electron gases in semiconductor heterostructures, where the energy level spacing

becomes very small as the QDs are filled with more and more e−, and also the

spectrum becomes more complicated as N increases. A NT QD can contain

thousands of e− and still have a relatively simple spectrum. Because of their

small size, nanotubes in the closed QD regime have also rather large charging

energies (typically ∼5-20 meV). These large charging energies, large energy level

spacings and the simplicty of the spectrum make metallic NTs a very suitable

system to study QD physics.

The constant interaction model together with eq. 2.9 for the energy spectrum

is a good starting point to analyze measurements on NT QDs in the Coulomb

blockade regime [6, 7]. However, more complete models are necessary to explain

the spectrum of NT QDs, and especially the excitation spectrum energies. The CI

model doesn’t take into account exchange effects, for example, and eq. 2.9 doesn’t

take into account the double orbital degeneracy of the NT band structure. In

chapter 4, a still simple, but more elaborated model, which takes into account

these effects [28], is used to explain the spectrum of high quality metallic NT

QDs.

Semiconducting CNTs are a complete different story. Chapter 3 reports the

first observation of QD behaviour in a large band gap semiconducting NT QD.

Theory indicates that semiconducting nanotubes are more susceptible to disorder

than metallic ones [29, 30]. When a semiconducting NT device is cooled down

to low temperature, disorder typically divides the NT into multiple islands, pre-

venting the formation of a single, well-defined QD. In chapter 3 we show that

the addition energy spectrum of semiconducting CNTs cannot be described by
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the models mentioned above (at least near the band gap). To start with, the

charging energy varies significantly (although smoothly) with N , which means

that the CI model is not valid. Also the energy dispersion relation is not linear,

but quadratic, so eq. 2.9 is not applicable. Moreover, a hard wall potential is not

appropriate to describe electron confinement in semiconducting NTs, because of

the weak screening due to the lack of charge carriers near the band gap and the

1-dimensionality of NTs. Altogether, the spectrum of semiconducting nanotubes

is not understood, and requires further experimental and theoretical study.

2.4 Kondo effect

The only transport mechanism we have described in section 2.2, was sequential

tunneling. This first-order tunneling mechanism gives rise to a current only at

the Coulomb peaks, with the number of electrons on the dot being fixed between

the peaks. This description is quite accurate for a dot with very opaque tunnel

barriers. However, when the dot is opened, so that the resistance of the tunnel

barriers becomes comparable to the resistance quantum, RQ ≡ h/e2 = 25.8 kΩ,

higher-order tunneling processes have to be taken into account. These lead to

quantum fluctuations in the electron number, even when the dot is in the Coulomb

blockade regime.

An example of such a higher-order tunneling event is shown in Fig. 2.14a.

Energy conservation forbids the number of electrons to change, as this would

cost an energy of order EC/2. Nevertheless, an electron can tunnel off the dot,

leaving it temporarily in a classically forbidden ‘virtual’ state (middle diagram

in Fig. 2.14a). This is allowed by virtue of Heisenberg’s energy-time uncertainty

principle, as long as another electron tunnels back onto the dot immediately, so

that the system returns the energy it borrowed. The final state then has the same

energy as the initial one, but one electron has been transported through the dot.

This process is known as (elastic) ‘cotunneling’ [31].

If the electron spin is taken into account, then events such as the one shown

in Fig. 2.14b can take place. Initially, the dot has a net spin up, but after the

virtual intermediate state, the dot spin is flipped. Unexpectedly, it turns out

that by adding many spin-flips events of higher orders coherently, the spin-flip

rate diverges. The spin on the dot and the electron spins in the reservoirs are no

longer separate, they have become entangled. The result is the appearance of a

new ground state of the system as a whole – a spin singlet. The spin on the dot

is thus completely screened by the electron spins in the reservoirs.

This is completely analogous to the well-known Kondo effect, which occurs in
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Figure 2.14: Higher-order tunneling events overcoming Coulomb blockade. a, Elastic
cotunneling. The Nth electron on the dot jumps to the drain to be immediately
replaced by an electron from the source. Due to the small bias, such events give rise to
a net current. b, Spin-flip cotunneling. The spin-up electron jumps out of the dot to be
immediately replaced by a spin-down electron. Many such higher-order spin-flip events
together build up a spin singlet state consisting of electron spins in the reservoirs and
the spin on the dot. Thus, the spin on the dot is screened.

metals containing a small concentration of magnetic impurities (e.g. cobalt). It

was observed already in the 1930’s [32] that below a certain temperature (typically

about 10 K), the resistance of such metals would grow. This anomalous behaviour

was not understood, until in 1964 the Japanese theorist Jun Kondo explained it

as screening of the impurity spins by the spins of the conduction electrons in

the host metal [33]. The screening is accompanied by a scattering resonance at

the Fermi energy of the metal, resulting in an increased resistance. In 1988, it

was realized that the same Kondo effect should occur (at low temperatures) in

quantum dots with a net spin [35, 36]. However, in quantum dots the scattering

resonance is manifested as an increased probability for scattering from the source

to the drain reservoir, i.e. as an increased conductance.

The Kondo effect appears below the so-called Kondo temperature, TK , which

corresponds to the binding energy of the Kondo singlet state. It can be expressed

in terms of the dot parameters as

TK =

√
hΓEC

2kB

eπε0(ε0+EC)/hΓEC (2.10)

where Γ is the tunnel rate to and from the dot, and ε0 is the energy level on the

dot relative to the Fermi energy of the reservoirs. The great advantage of using
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quantum dots, in general, to study the Kondo effect, is that they allow these

parameters to be tuned in situ [34]. In the case of carbon nanotubes, the double

orbital degeneracy results in new and exotic regimes of the Kondo effect, as is

demonstrated in chapter 6.

The main characteristics of the Kondo effect in transport through a quantum

dot are schematically depicted in Fig. 2.15. For an odd number of electrons on

the dot, the total spin S is necessarily non-zero, and in the simplest case S = 1/2.

However, for an even electron number on the dot – again in the simplest scenario

– all spins are paired, so that S = 0 and the Kondo effect is not expected to

occur. This ‘even-odd-asymmetry’ results in the temperature dependence of the

linear conductance, G, as shown in Fig. 2.15a. In the ‘odd’ or ‘Kondo’ valleys the

conductance increases as the temperature is lowered, due to the Kondo effect.

In the ‘even’ valleys, on the other hand, the conductance decreases, due to a

decrease of thermally excited transport through the dot.

The temperature dependence of the conductance in the middle of the Kondo

valleys is shown in Fig. 2.15b. The conductance increases logarithmically with

decreasing temperature [35], and saturates at a value 2e2/h at the lowest tem-

peratures [36, 37]. Although the dot has two tunnel barriers and the charging

energy tends to block electrons from tunneling on or off, the Kondo effect enables

electrons to pass unhindered through the dot. This complete transparency of the

dot is known as the ‘unitary limit’ of conductance [38]. The Kondo resonance

at the Fermi energy of the reservoirs is manifested as a zero-bias resonance in
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Figure 2.15: Schematic representation of the main characteristics of the Kondo ef-
fect in electron transport through a quantum dot. a, Linear conductance versus gate
voltage, for T ¿ TK (solid line), T . TK (dotted line), and T À TK (dashed line). the
Kondo effect only occurs for odd electron number, resulting in an odd-even asymmetry
between the different Coulomb valleys. b, In the odd (‘Kondo’) valleys the conductance
increases logarithmically upon lowering the temperature, and saturates at 2e2/h. c,
The Kondo resonance leads to a zero-bias resonance in the differential conductance,
dI/dVSD, versus bias voltage, VSD.
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the differential conductance, dI/dVSD, versus VSD, as shown in Fig. 2.15c. The

full width at half maximum of this resonance gives an estimate of the Kondo

temperature.

2.5 Device fabrication

It is quite difficult to overestimate the importance of a good sample fabrication

procedure for the success of a physics experiment. This is, perhaps, even more

true in nanoscience, where the intrinsically small size of the devices, makes them

very sensitive to external influences. The fabrication of the nanotube devices used

in the experiments described in this thesis requires state of the art nanofabrica-

tion facilities and techniques. Roughly speaking, the fabrication process can be

divided in four parts: (i) fabrication of markers; (ii) nanotube deposition/growth;

(iii) nanotube location and electrode fabrication, and (iv) room temperature char-

acterization and sample bonding. Although each of these steps is not ‘per se’

difficult (however tedious it may be), so many things can go wrong at any of

them that, at the end, the fabrication of a good device requires a considerable

amount of careful concentration, practice, patience and, why not admit it, good

luck.

Fabrication of markers

In all experiments the nanotubes are grown/deposited on top of oxidized sili-

con substrates. The Si-substrates are highly doped (p-doped in our case) so that

they remain conductive at low temperatures and can serve as a backgate in our

devices. The thickness of the thermally grown oxide is typically ∼250 nm, and

isolates the devices from the back gate. A set of markers is necessary to later lo-

cate the position of the nanotubes and for the fabrication of the electrodes. These

include a set of electron beam lithography alignment markers (e-beam markers)

and atomic force microscopy (AFM) markers. The patterning of these markers

requires one e-beam lithography ‘cycle’ (Fig. 2.16), which consists of spinning a

double layer of e-beam resist, e-beam lithography, development, metal evapora-

tion and lift-off. The bottom layer of resist (poly-methyl methacrylate (PMMA)

350K 3% in chlorobencene) is thicker and more sensitive to e-beam radiation,

serves as a spacer and ensures a proper lift-off. The top resist layer (PMMA

950K 2% in chlorobencene) is less sensitive and serves as the actual mask for

metal evaporation. Once the resist is spun, a pattern is ‘written’ by irradiating

the PMMA with a beam of electrons, which breaks the bonds in the polymer.
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Figure 2.16: Schematic electron beam lithography cycle. a, Double layer of organic
resist is spun on a substrate and a predesigned patter is irradiated with a beam of
electrons. b, After development, an opening is left in the resist. c, Metal is evaporated
on top of the substrate + remaining resist. d, The remaining resist is removed and the
metal is left at the predesigned positions.

The ‘exposed’ resist is removed from the substrate by immersing the sample in a

developer (a 1:3 solution of methyl isobutyl ketone (MIBK) and iso-propyl alco-

hol (IPA)). Then the substrate is placed in an e-beam evaporator, where (Cr or

Ti)/Pt (5/70 nm) is evaporated. Chromium or titanium are used as sticking layers

for the platinum. We use Pt for the markers because they can withstand, without

severe deformation, the high temperatures (∼ 900 ◦C) during nanotube growth.

After metal evaporation, the unexposed resist and excess metal is removed by

immersing the sample in hot acetone (∼ 55 ◦C). We have observed that further

immersing the sample for ∼ 10 minutes in dichloroethane (DCE) helps removing

small amounts of PMMA residue left during the lift-off process. DCE should not

be used with certain metals (such as Al) because it can react with them, and it

should be handled with special care because of its high toxicity. After lift-off, we

are left with a substrate which contains e-beam markers, AFM markers, as well as

a series of optical and numerical markers to help handling and tagging of samples.
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Carbon nanotube deposition/growth

We have used two methods to place nanotubes on the substrates: direct de-

position from a solution, and chemical vapour deposition (CVD) growth. For

the first one we put a small amount of carbon nanotube material in a bottle

containing DCE and sonicate until the nanotube material has disentangled into

separate nanotubes (typically ∼ 30 min to 1 hour). Then a few droplets of solu-

tion are placed on a substrate and blown-dried with nitrogen. This process leaves

nanotubes all over the substrate. It is easy and fast, but it has certain disadvan-

tages, such as tuning the concentration of nanotubes, the fact that many times

the nanotubes appear in ropes and not individually, and the random location

in the deposition. Besides we have also noticed that it is harder to make good

contact to deposited NTs than to CVD-grown tubes. For these reasons, most

of our last experiments have been performed with carbon nanotubes grown by

CVD. For the catalyst, 40 mg of Fe(NO3)3·9H2O, 2 mg of MoO2(acac)2 (Sigma

Aldrich), and 30 mg of Alumina nanoparticles (Degussa Aluminum Oxide C)

are mixed in 30 ml of methanol and sonicated for ∼ 1 hr. The resulting liquid

catalyst is deposited onto the substrate with 0.5 µm2 openings in the PMMA

resist (patterned on specific known locations by e-beam lithography) and blown

dry. After lift-off in acetone, the substrate with patterned catalyst is placed in a

1-inch quartz tube furnace and the CVD is carried out at 900◦C with 700 sccm

H2, 520 sccm CH4 for 10 min. Argon is flown during heating up and cooling

down. The methane and hydrogen flows have been optimized to obtain long and

clean nanotubes (∼ 10 µm) without amorphous carbon deposition. After growth,

typically a few tubes have grown from each catalyst site and, since the catalyst

particles are patterned in known locations, the location of the nanotubes on the

substrate is also known.

Nanotube location and electrode fabrication

After the nanotube deposition/growth, the substrates are inspected by atomic

force microscopy. All our devices have ‘customized electrodes’, i.e., we design

electrodes individually for each nanotube device. While this requires a consid-

erable amount of AFM time and design compared to, for example, depositing

random grids of electrodes on the substrate, we find it very convenient in order

to contact ‘nice looking’ individual nanotubes with a given diameter and length

in between electrodes. We also typically choose straight segments of nanotubes

(to prevent multiple quantum dot formation) located on ‘residue-free’ areas, to

minimize switching behaviour. The AFM pictures determine the precise location
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Figure 2.17: Fabrication process. Left: scheme of a substrate with the AFM markers,
catalyst particles at predefined positions, grown nanotubes and designed electrodes.
The separation between AFM markers is 6µm. Right: Actual AFM picture of one of
our devices.

of the nanotubes with respect to the predefined AFM markers. We import these

pictures into a CAD program (Design CAD) and directly design the electrodes on

top of the desired NTs. A subsequent e-beam lithography step is carried out to

write the electrodes and evaporate the metal. The contact metal can be Cr/Au,

Ti/Au, Pd, Ti/Al, etc... depending on the type of experiment. After lift-off, the

sample is ready for optical inspection and room temperature characterization. In

some cases we etch part of the SiO2 in order to suspend the nanotubes. This

is done by immersing the samples in buffered HF for ∼ 1 − 2 min, transfer to

water and followed by a gentle drying in hot IPA (to prevent the collapse of the

nanotube due to surface tension effects).

Room temperature test and sample bonding

A typical sample substrate contains four cells, with about 4-8 devices per

cell. If there are no problems with lift-off, the electrodes are placed on top of

the NTs with nearly 100% yield. The devices are characterized electrically in

a room temperature probe station, where the conductance is measured versus

gate voltage to determine if the tubes are semiconducting or metallic and also

how good is the contact to the nanotubes. After that, the chip is glued on a

chip carrier and some selected devices are bonded. The sample is ready to be

connected to the low temperature measurement setup.
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Chapter 3

Electron-hole symmetry in a

semiconducting carbon nanotube

quantum dot

P. Jarillo-Herrero, S. Sapmaz,
C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant

Optical and electronic phenomena in solids arise from the behaviour of electrons

and holes (unoccupied states in a filled electron sea). Electron-hole symmetry

can often be invoked as a simplifying description, which states that electrons with

energy above the Fermi sea behave the same as holes below the Fermi energy.

In semiconductors, however, electron-hole symmetry is generally absent since the

energy band structure of the conduction band differs from the valence band [1].

Here we report on measurements of the discrete, quantized-energy spectrum of

electrons and holes in a semiconducting carbon nanotube [2]. Through a gate, an

individual nanotube is filled controllably with a precise number of either electrons

or holes, starting from one. The discrete excitation spectrum for a nanotube with

N holes is strikingly similar to the corresponding spectrum for N electrons. This

observation of near perfect electron-hole symmetry [3] demonstrates for the first

time that a semiconducting nanotube can be free of charged impurities, even in

the limit of few-electrons or holes. We furthermore find an anomalously small

Zeeman spin splitting and an excitation spectrum indicating strong electron-

electron interactions.

This chapter has been published in Nature 429, 389 (2004).
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3.1 Introduction

Carbon nanotubes can be metallic or semiconducting depending on their chiral-

ity. Electron transport through individual nanotubes has been studied for both

classes [2]. Nanotubes of finite length have a discrete energy spectrum. Anal-

ogous to studies on semiconducting quantum dots, these discrete states can be

filled with electrons, one by one, by means of a voltage applied to a nearby

gate electrode [4]. Whereas metallic nanotubes have shown clean quantum dot

(QD) behaviour [5, 6, 7], this has not been achieved in semiconducting single

wall nanotubes (SWNTs). Theory indicates that semiconducting tubes are more

susceptible to disorder than metallic ones [8, 9]. Disorder typically divides a

semiconducting nanotube into multiple islands preventing the formation of a sin-

gle, well-defined QD. Consequently, the electronic spectrum of semiconducting

SWNTs has not been resolved before.

We report here on clean semiconducting tubes and focus on the regime of a

few charge carriers (electrons or holes). We use high-purity carbon nanotubes

(HiPco [10]), which are deposited with low density on a doped Si substrate (serv-

ing as a backgate) that has an insulating SiO2 top layer [11, 12]. Individual

nanotubes are electrically contacted with source and drain electrodes (50 nm

Au on 5 nm Cr). We then suspend the nanotubes by etching away part of the

SiO2 surface [12]. We generally find that removing the nearby oxide reduces the

amount of potential fluctuations (i.e. disorder) in the nanotubes, as deduced

from transport characteristics.

3.2 A few electron-hole quantum dot

In this paper we focus on one particular semiconducting device that shows regular

single QD behaviour for both few-hole and few-electron doping. The distance

between the electrodes in this device is 270 nm (Fig. 3.1a). The dependence of the

linear conductance on gate voltage shown in Fig. 3.1c is typical for semiconducting

p and n-type behaviour [13, 14]. A low-temperature measurement around zero

gate voltage (Fig. 3.1d) shows a large zero-current gap of about 300 meV in bias

voltage, reflecting the semiconducting character of this nanotube. The zigzag

pattern outside the semiconducting gap is due to Coulomb blockade [4]. These

Coulomb blockade features are more evident in Fig. 3.1e, where a high-resolution

measurement of the differential conductance shows the semiconducting gap with

the first two adjacent Coulomb blockade diamonds.

The identification of the Coulomb diamonds for the first electron and first hole

allows for an unambiguous determination of the particle number as we continue
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Figure 3.1: Sample and characterization. a, Atomic force microscope image of the
device before suspension (scale bar, 200 nm). b, Device scheme: The nanotube QD is
connected to source and drain electrodes via tunnel barriers characterized by resistances
RS , RD and capacitances CS , CD. The backgate is represented by a capacitor CG. The
dc source-drain current, I, is recorded in the measurements as a function of source-drain
voltage V and gate voltage VG. Current-voltage (I−V ) characteristics are numerically
differentiated to obtain the differential conductance, dI/dV . c, Linear conductance,
G, as a function of gate voltage, VG, at a temperature, T ∼ 150 K showing the p and
n conducting regions separated by the semiconducting gap. d, Large-scale plot of the
current (blue, negative; red, positive; white, zero) versus both V and VG at T = 4 K.
e, High-resolution measurement of the differential conductance as a function of V and
VG in the central region of d at 0.3 K. Between VG ∼ -250 and 650 mV, the nanotube
QD is depleted entirely from mobile charge carriers. As VG increases (decreases), one
electron (hole) enters the dot as indicated in the right (left) Coulomb diamond.

to fill the QD by further changing the gate voltage. Figure 3.2a shows the filling

of holes, one by one, up to 20 holes. The region for the first 2 holes is enlarged

in Fig 3.2b. The regularity in the Coulomb diamonds indicates a nanotube that

is free of disorder. A closer inspection shows that the size of the Coulomb dia-

monds varies periodically on a smooth background as the hole number increases
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Figure 3.2: Few-hole semiconducting nanotube. a, Two-dimensional colour plot of
dI/dV , vs. V and VG at T = 4 K (black is zero, white is 3µS). In the black diamond-
shaped regions the number of holes, N , is fixed by Coulomb blockade. b, Zoom in
taken at 0.3 K of the region with 0, 1, and 2 holes (white represents dI/dV > 10 nS).
Lines outside the diamonds running parallel to the edges correspond to discrete energy
excitations (the black (red) arrow points at the one electron ground (excited) states).
c, Addition energy, Eadd, vs. N . Eadd is deduced from the diamond size for positive
and negative V (i.e. half the sum of the yellow arrows in a). Inset, the capacitances
CS (green), CD (blue) and CG (black) vs. N . d, Calculation of the addition energy
spectrum for a semiconducting nanotube (as an example we have taken a zig-zag (35,0),
with Egap ∼ 259 meV, meff = 0.037me [3]) for a harmonic potential (top) and a
hard-wall potential (bottom). The parameters for the harmonic potential are: V (x =
±135 nm)= Egap/2 (see appendix). e, Zeeman splitting energy, EZ , vs. magnetic
field, B, for the one hole orbital states. The data result from two different types of
measurements: (i) individual gate voltage traces at fixed bias (circles) and (ii) stability
diagrams (squares, see also appendix). Inset: g-factor as a function of N . The point
for N = 1 is the average of the data in Fig. 3.2e. The points for N = 5, 7 and 9 are
obtained from co-tunneling (see appendix).
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(Fig. 3.2c). The alternating, even-odd pattern in this addition energy, Eadd, re-

flects the subsequent filling of discrete orbital states with two holes of opposite

spin [4].

3.3 Electron-hole symmetry

We first focus on the additional discrete lines outside the Coulomb diamonds

running parallel to its edges, as for instance indicated by arrows in Fig. 3.2b.

Whereas the upper-left edge of the N -hole diamond reflects the ground state

energy of the (N+1)-hole, the extra lines located at higher voltages, V , represent

the discrete excitation spectrum for (N+1)-holes [4]. The spacing in V directly

measures the energy separation between the excitations. Such discrete spectra

were not obtained before for semiconducting nanotubes.

We now compare the excitation spectra for a particular hole (h) number with

the same electron (e) number. The left and right columns in Fig. 3.3 show

the spectra for, respectively, holes and electrons. The upper row compares the

spectra for 1h and 1e. The yellow arrows in Fig. 3.3a point at the first 3 excited

states for a single hole. (Note that only lines with positive slopes are observed

because of asymmetric tunnel barriers [4].) Yellow arrows in Fig. 3.3b indicate the

corresponding first 3 excitations for a single electron. (Figure 3.4 explains this

correspondence.) Remarkably, we have simply mirror-imaged the arrows from

the hole to the electron side without any adjustment of their spacing. We thus

find that the 1h and 1e excitations occur at the same energy. Since one-particle

systems are free from particle-particle interactions, this symmetry implies that

the confinement potential for electrons is the same as for holes.

Electron-hole symmetry also survives interactions as demonstrated in the

lower rows in Fig. 3.3. Again the arrows pointing at the hole excitations have

simply been mirror-imaged to the electron side. Thus, we indeed find that the

spectra for 2h and 2e and for 3h and 3e show virtually perfect electron-hole sym-

metry in the excitation spectra. From a closer look one can see that also the

relative intensities of the excitation lines display electron-hole symmetry.

The quality of our data allows for a quantitative analysis. The addition energy

is defined as the change in electrochemical potential when adding the (N+1)

charge to a QD containing already N charges. The constant-interaction (CI)

model [4] gives Eadd = U + ∆E, where U = e2/C is the charging energy (C =

CS + CD + CG) and ∆E is the orbital energy difference between N+1 and N

particles on the QD. In the case of a semiconductor QD the addition energy

for adding the first electron to the conduction band equals U + Egap. From the
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observed gap size of 300 meV and U ∼ 50 meV, we determine the semiconducting

gap Egap ∼ 250 meV, which corresponds to a nanotube diameter of 2.7 nm [3].

AFM measurements, that usually underestimate the real height [15], indicate an

apparent tube height of 1.70.5 nm.

Since two electrons with opposite spin can occupy a single orbital state, the

CI model predicts an alternating value for Eadd, where Eadd = U for N = odd,

and Eadd = U + ∆E for N = even. We indeed observe such an even-odd alter-

nation in Fig. 3.2c with average ∆E ∼ 4.3 meV throughout the entire range of

N = 1 to N = 30. Measurements of the Zeeman spin-splitting in a magnetic field

(see appendix) confirm our assignment of even-odd particle number: Lines cor-

responding to ground states for odd N split (i.e. total spin = ), whereas even-N

lines do not split (i.e. total spin = 0). Figure 3.2e shows the value of the Zeeman

energy for the one hole orbital states as a function of magnetic field. The data

yield a reduced g-factor, g ∼ 1.1, which is significantly lower than the value g = 2

reported on metallic nanotubes [5, 7]. (Some experiments on metallic nanotubes

report deviations [16].) The reduction in g-factor disappears when adding holes.

The inset shows that already for 9 holes the normal value is almost recovered.

Lower g-factors are generally due to spin-orbit coupling, but this effect is small

for carbon. It may hint at strong electron-electron interactions in the 1D-QD

(see discussion below).

The addition energy spectrum indicates ∆E ∼ 4.3 meV for consecutive states

as we fill the QD with holes. Previous spectra from metallic nanotubes have been

analysed by considering a hard-wall potential in the nanotube, with an effective

mass determined by the band structure. Our data show that this approach is

not justified for semiconducting nanotubes. Lack of effective screening in 1D and

the low number of mobile charges yield a gradual potential decay from the con-

tacts [17]. We have computed the addition energy spectrum for a semiconducting

nanotube whose gap is ∼ 250 meV for two situations (Fig. 3.2d): hard-wall and

harmonic potential of height Egap/2 at the contacts [17]. For hard walls the level

spacing increases slowly up to ∼ 1.9 meV for N = 34. In the case of a har-

monic potential, the level spacing is constant, as in the experiment, and equals

2.7 meV, in reasonable agreement with the experimental value ∼ 4.3 meV (see

also appendix ).

On top of the predicted even-odd pattern, there is a monotonic decrease of the

average charging energy with N , implying that the total capacitance is changing.

We have performed a detailed analysis of the QD electrostatics following ref. [18].

The result is given in the inset to Fig. 3.2c. It shows that the change in C is mainly

due to an increase in CS and CD. This increase can be assigned to a decrease

of the tunnel barrier widths as |VG| increases, consistent with the simultaneous
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increase of dI/dV in Fig. 3.2a,b. Indeed, dI/dV varies from (5GΩ)−1 in the first

Coulomb peak to (400kΩ)−1 at large negative VG.
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Figure 3.3: Excitation spectra for different electron and hole numbers demonstrating
electron-hole symmetry. dI/dV is plotted versus (V, VG) at T = 0.3 K. a, The transition
from the 0 to 1h Coulomb diamonds. b, Corresponding transition from 0 to 1e. The
white dotted lines in b are guides to the eye to indicate the diamond edge (not visible
for this choice of contrast). c and d, same for 1-2h and 1-2e. e and f, Low-bias zoom
in of the 1-2h and 1-2e crossings. g and h, Crossings corresponding to the 2-3h and
2-3e regions. (In h, the current switched between two stable positions for positive bias,
with corresponding noise in dI/dV .)
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The observation of electron-hole symmetry poses severe restrictions on the

QD system: the effective masses for holes and electrons should be equal and

the QD should be free of disorder. Scattering by negatively charged impurities,

for example, is repulsive for electrons but attractive for holes, so it would break

electron-hole symmetry. A symmetric band structure has been theoretically pre-

dicted for graphite materials and carbon nanotubes [3]. In contrast, the absence

of scattering has come as a positive surprise.

Figure 3.4 clarifies the correspondence between the electron and hole excita-

tion spectra. On the right side of Fig. 3.4b the situation for electrons is drawn

(for VG > 0) and on the left side for holes (for VG < 0). The resulting excitations

in transport characteristics as a function of V and VG then lead to spectra as

sketched in Fig. 3.4c and as measured in Fig. 3.3.

A detailed analysis of the excitation spectrum requires calculations that are

beyond the scope of this paper. The constant-interaction model provides the

parameter range for more exact models. The change in orbital energy when

adding a charge is given by ∆E ∼ 4.3 meV, independent of N . ∆E is the

scale for the energy difference between single-particle states. Excitations of a

smaller energy scale have to be related to interactions. The likely interactions

in semiconducting nanotubes are (1) Exchange interaction between spins (e.g.

spin = 1 triplet states gain energy from the exchange interaction). Note that

we observe an even-odd pattern, which seems to exclude ground states with

spins > 1/2. Excited states, however, can have spins > 1/2. (2) Electron-phonon

interactions. The vibrational modes in a suspended nanotube also have a discrete

spectrum, which can show up in the excitation spectra [19]. Note that vibrational

modes do not affect the addition energy spectrum of the ground states. (3)

Electron-electron interactions. The value for the interaction strength parameter

U/∆E ∼ 10. Such a large U/∆E ratio points to the presence of phenomena that

are not captured by the CI model. Luttinger liquid models developed for finite

length metallic nanotubes are not applicable to our few particle nanotubes. A

more appropriate starting point are the exact calculations for 1D QDs. In the few

particle regime the charge carriers tend to localize and maximize their separation,

thereby forming a Wigner crystal [20]. In such a Wigner state, the spectrum

consists both of high-energy single particle excitations and collective excitations

at low energy [21], similar as in our experiment. Detailed calculations beyond

the CI model and a comparison with the experimental results are necessary to

establish the precise effect on transport from these interactions.

We thank R. E. Smalley and coworkers for providing the high-quality HiPco
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3.4 Appendix

This appendix contains additional discussion and data, and was published as

Supplementary Information to the main text in the corresponding publication

(see Chapter title’s page).

Model calculations

In the main text we show model calculations of the addition energy, Eadd,

for two types of electrostatic potential in the nanotube: hard-wall versus a par-

abolic potential (Fig. 3.2d). In both cases, we assume a zig-zag (n,m) = (0,35)

nanotube (taken such that the theoretical band gap, Egap ∼ 259 meV, is close

to the experimental value Egap ∼ 250 mV). From the band structure of this

nanotube we obtain meff ∼ 0.037me (ref. [3] main text). The effective mass,

meff , is an important parameter for the value of the level spacing. We note that
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n-doped
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Figure 3.5: Band diagram scheme in the nanotube for negative, a, and positive, b,
gate voltage.

meff is the same for a given semiconducting gap and approximately independent

of chirality. In the case of a hard-wall potential, the level spacing is given by

∆En = En − En−1 = h2π2(2n − 1)/2meffL
2, where L is the length of the nan-

otube. This value of ∆En increases with n, which is not observed in the data. In

contrast, for a harmonic potential, the level spacing is constant, and equal to ~ωo.

We determine ~ωo by requiring the potential height at the nanotube edges to be

equal to half the band gap, Egap/2 = 1/2meffω
2
o(L/2)2. The important point is

that the potential is gradually decaying into the nanotube (ref. [17] main text, see

Fig. 3.5 for a scheme of the band diagram in the nanotube for both negative and

positive gate voltages). We find that only experimentally determined parameters

(Egap and L) enter the model calculations. To simulate the monotonic decrease of

the charging energy with N , we have fitted the odd values of the addition energy

[Eadd(Nodd) = U ]. Then Eadd(N + 1) = U(N + 1) + ∆En, with (N + 1) = even.

We note that we keep the harmonic potential constant as we fill the QD with

holes. Screening will start to play a role as we add more and more charges to

the nanotube and will gradually change the harmonic potential into a hard-wall

potential. Moreover, in the calculations we have included spin degeneracy for

each orbital state and an extra factor of 2 to account for the two 1D modes in

the nanotube.

Scattering and disorder

Here we show additional data from another semiconducting device which

shows regular quantum dot behaviour and where the dicrete spectrum can be

discerned. We discuss also the importance of disorder. The symmetry in the

electron-hole excitation spectrum (Fig. 3.3) shows that there is absence of sig-

nificant charged scatterers in the device as discussed in the main text. This is

especially important since semiconducting nanotubes are much more sensitive to

disorder than metallic ones. It should also be noted that the diameter of the nan-

otube described in the main text is rather large. It is known that large diameter

nanotubes are less sensitive to disorder than small diameter ones [22]. For com-
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Figure 3.6: Differential conductance plot for a different semiconducting nanotube
device. a, Few hole regime. b, Large hole number regime. c High electron number
regime.

parison, we show additional data corresponding to a CVD-grown, non-suspended

semiconducting nanotube. The estimated band gap is ∼ 800 meV (correspond-

ing to ∼ 1 nm diameter). Fig. 3.6a shows the few-hole Coulomb diamonds (the

current is plotted in log-color scale) in the p-doped region at T = 4 K, next to

the semiconducting gap. The number of holes could not be exactly determined.

For N ≥ 6 − 8 the nanotube exhibits single quantum dot behaviour. However,

the pattern becomes irregular as the quantum dot is near full depletion. This is a

general feature of most of the studied semiconducting devices. We believe that as

the QD is depleted, the holes or electrons tend to localize due to a lack of screen-

ing of the disorder potential, consequently forming multiple islands. Fig. 3.6,

b and c, show Coulomb diamonds (differential conductance) deep in the p-side

(Nh ∼ 100) and in the n-side (Ne ∼ 40) at T = 300 mK for the same device

in a different cool down. The discrete spectrum is very clearly visible. We can

conclude, then, that single QD behaviour can be observed in semiconducting nan-

otubes both in the few-charge carrier regime (main text) and in the regime with

many particles (Fig. 3.6, b and c). In order to study clean nanotubes in the few

charge-carriers regime, it may be important to select large diameter nanotubes.

We have observed in other (metallic) samples that also suspending the nanotubes

yields in general more stable devices. This seems to be an advantage also in the

case of semiconducting nanotubes.

Zeeman splitting
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We show here dI/dV versus (V, VG) at low energies in the 1-2 holes region

at zero (Fig. 3.7a) and finite (Fig. 3.7b) magnetic field, showing the Zeeman

splitting for N = 1 (indicated by the yellow arrows). For N = 2 no Zeeman

splitting is observed, as expected. We have performed an analysis of the inelastic

cotunneling data (raw data shown in Fig. 3.7c) in a magnetic field [23], from

which we obtain the g-factor as we increase the number of holes. (Note that the

Zeeman splitting can be observed only for Nh = odd.) We have data for N = 5, 7

and 9, where the onset of inelastic-cotunneling is clearly observable. These are

plotted in the inset to Fig. 3.2e.
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Electronic excitation spectrum of

metallic carbon nanotubes

S. Sapmaz, P. Jarillo-Herrero, J. Kong,
C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant

We have studied the discrete electronic spectrum of closed metallic nanotube

quantum dots. At low temperatures, the stability diagrams show a very regular

four-fold pattern that allows for the determination of the electron addition and

excitation energies. The measured nanotube spectra are in excellent agreement

with theoretical predictions based on the nanotube band structure. Our results

permit the complete identification of the electron quantum states in nanotube

quantum dots.

This chapter has been published in Physical Review B 71, 153402 (2005).
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4.1 Introduction

Since their discovery [1] carbon nanotubes (NTs) have emerged as prototypical

one-dimensional conductors [2]. At low temperatures, NT devices form quantum

dots (QDs) where single-electron charging and level quantization effects domi-

nate [3, 4]. A continuous improvement in device fabrication and NT quality has

enabled the recent observation of two-electron periodicity in ’closed’ QDs [5] and

four-electron periodicity in ’open’ single- and multi-wall NT QDs [6, 7]. The-

oretically, the low-energy spectrum of single wall nanotube (SWNT) QDs has

been modeled by Oreg et al., [8]. Experiments on open NT QDs are compatible

with this model, but the presence of the Kondo effect and broadening of the en-

ergy levels prevents the observation of the full spectrum [9]. An analysis of the

electronic excitations is therefore still lacking.

The two-fold degenerate, low-energy band structure of a metallic SWNT is

schematically shown in Fig. 4.1a. Quantization along the nanotube axis leads to a

set of single particle states that are equally spaced because of the linear dispersion

relation [10]. The combination of the two bands and the spin yields a four-fold

periodicity in the electron addition energy. The simplest model to describe QDs

is the Constant Interaction (CI) model [11], which assumes that the charging

energy is constant and independent of the occupied single particle states. To

describe NT QDs the CI-model has been extended [8] to include five independent

parameters: the charging energy EC , the quantum energy level separation ∆,

the subband mismatch δ (see Fig. 4.1a), the exchange energy J and the excess

Coulomb energy dU . Fig. 4.1c illustrates the meaning of the last two parameters.

An independent verification of the Oreg model [8] requires the observation of the

ground state addition energies and of, at least, two excited states. Such a study

has not been reported.

Here we investigate the excitation spectrum of closed SWNT QDs. Not only

the ground but also the complete excited state spectrum of these QDs has been

measured by transport-spectroscopy experiments, enabling us to determine all

five parameters independently. With these, the remaining measured excitation

energies are well predicted leading to a complete understanding of the spectrum,

without adjustable parameters.

4.2 Four-fold shell filling

HiPco [12] and CVD [13] grown NTs were used for the fabrication of the devices.

HiPco tubes were dispersed from a dichloroethane solution on an oxidized, p-

doped Si substrate. The CVD nanotubes were grown from catalyst particles on
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Figure 4.1: (a) Low-energy band structure of a metallic SWNT. In a finite length
SWNT, the wave vector k is quantized along the tube axis which leads to a set of
quantized energy levels separated by ∆ in each band. δ is the mismatch between the
two bands. (b) Schematic diagram of the device geometry. (c) Meaning of J (left) and
dU (right). The exchange energy favors spin alignment and dU is the extra charging
energy associated with placing two electrons in the same energy level. (d), (e), and (f)
Conductance as a function of gate voltage in the linear response regime at 4 K for three
different CVD grown samples. The NT lengths are 500, 680 and 760 nm, respectively.

predefined positions. Individual NTs were located by atomic force microscopy

(AFM) with respect to predefined marker positions and electrodes were designed

on top of straight segments of NTs. The highly doped silicon is used as a backgate

to change the electrostatic potential of the NT QD (see Fig. 4.1b). We have

fabricated NT devices with lengths in between contacts, L, varying from 100 nm

to 1 µm.

Four-electron shell filling has been observed in over 15 samples. In some

cases the four-fold pattern extended over more than 60 electrons added to the

QD. Figs. 4.1d-f show representative examples of Coulomb Blockade (CB) oscilla-

tions [14] in the linear response regime. Clearly, the Coulomb peaks are grouped

in sets of four reflecting the two-fold character of the NT bandstructure.

In the following, we focus on three different devices exhibiting similar four-

fold periodicity in CB oscillations. These samples (A, B and C) had high enough

contact resistances so that not only the electron ground states but also their

excited states could be resolved. Together they provide enough information to
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determine all the parameters in the model. We discuss the results of these three

samples separately.

4.3 HiPCO nanotubes

Sample A- This device is made from a HiPco NT [12] with L = 180 nm and

a diameter of 1.1 nm as determined by AFM. It is contacted by evaporating

Cr/Au (5/75 nm) electrodes. Fig. 4.2a shows the current, I, as a function of

source-drain bias voltage, V , and gate voltage, VG. In the light-colored diamond-

shaped regions, the current is blocked due to CB and the number of electrons is

fixed. The clear four-fold periodicity makes it possible to assign the number of

electrons in the last occupied shell. The sizes of the diamonds form an interest-

ing pattern, namely a repetition of small/medium/small/big. This pattern is a

consequence of the large subband mismatch compared to the exchange energy, as

we show below.

The addition energy is defined as the change in electrochemical potential

(∆µN) when adding the (N + 1) charge to a quantum dot already containing N

charges [11]. The addition energy is obtained by multiplying the diamond width,

∆VG, by a conversion factor, α (≈ 0.017), which relates the gate voltage scale to

the electrochemical potential [14].

The Oreg-model yields the following equations for the addition energy of the

N -th electron added [15]:

∆µ1 = ∆µ3 =EC + dU + J (4.1)

∆µ2 =EC + δ − dU (4.2)

∆µ4 =EC + ∆− δ − dU. (4.3)

To extract all five parameters, two more equations are needed. These are pro-

vided by the excitation spectrum. In Fig. 4.2c we show the numerical derivative

of Fig. 4.2a (i.e., the differential conductance) for the first group of four. Excited

states of the electrons are visible for all diamonds. The value of a particular ex-

citation energy equals the bias voltage at the intersection between the excitation

line and the Coulomb diamond edge (see Fig. 4.2c). The dotted (white) arrows

in diamond one and two in Fig. 4.2c correspond to the first excitation for one and

two electrons extra on the NT QD respectively. The theoretical values of these

two energies are

∆µex
1 = δ, ∆µex

2 = δ − J − dU. (4.4)
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Figure 4.2: Sample A (a) Current as a function of V and VG at T = 300 mK. Current
goes from −40 nA to +40 nA.(b) Values of the parameters for three different groups
of four (see text).(c) The differential conductance (dI/dV ) for the first group from
(a). Black is zero and bright is >12 µS. Lines running parallel to the diamond edges
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excitations are indicated by (yellow) normal arrows. (d) Calculated spectrum for
sample A. The stars correspond to the normal (yellow) arrows in (c) and x corresponds
to the dotted (white) arrow. The white diagrams indicate the ground state spin filling.

Equations (4.1)-(4.4) allow us to uniquely determine the five unknown para-

meters from the experimental data alone. We find EC = 4.3 meV, ∆ = 9.0 meV,

δ = 3.2 meV, J = 0.4 meV and dU ≈ 0 meV. The values of the parameters

do not vary significantly between the different groups, as shown in Fig. 4.2b.

The theoretically expected value for the level spacing is ∆ = hvF /2L [3]. With

vF = 8.1 · 105 m/s [16] and L = 180 nm, we find 9.3 meV in excellent agreement

with the experimental value.

Figure 4.2d shows the calculated spectrum of the NT QD using the parameters

deduced from the experiment. Some excitations are split by the exchange energy.

The stars in the calculated spectrum correspond to the arrows in the experimental

data. The excitations denoted with x were used for obtaining the parameters and

correspond to the dotted (white) arrows in Fig. 4.2c . The calculated spectrum

resembles the measured one strikingly well.
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4.4 CVD nanotubes

Sample B - This sample is CVD grown [13] with a diameter of 1.3 nm and L =

500 nm defined by Cr/Au contacts (5/40 nm). After contacting, the entire NT

segment in between electrodes is suspended by etching away part of the SiO2 [17].

We have measured the differential conductance, dI/dV , as a function of V and

VG at 300 mK (Fig. 4.3a). Again regular four-fold patterns are visible in the

Coulomb diamonds.
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Figure 4.3: Differential Conductance of sample B (a) and C (c) as a function of V and
VG measured at 300 mK. Black represents dI/dV ∼ 0, while lighter tones correspond
to a higher conductance. Dashed lines in (c) indicate the excited states together with
inelastic cotunneling. (b) Obtained parameters for sample B. (d) Electron quantum
states of the NT QD. The numbers on the left denote the ground state (GS) number
of electrons in the last occupied shell. The left column indicates the GS electron
configuration (note that the two-electron GS is degenerate). Columns on the right
denote the excited state (ES) configuration. Up to four ES are visible in the large
Coulomb diamonds [22]. The dotted (red) arrow in the second ES for one electron
corresponds to an electron excited from the lower shell.

The evolution of the Coulomb peaks as a function of the magnetic field (not

shown here) gives information about the spin filling of the states [18]. We find

that the filling is the same as sample A. Excited states of the QD are visible in

all groups of four. The model parameters have been extracted using the same

analysis as described above. The result is shown in Fig. 4.2b. The average values
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are EC = 2.0 meV, δ = 1.2 meV, J = 0.1 meV, dU = 0.2 meV and ∆ = 3.0 meV.

The value of ∆ corresponds to a length of 440 nm [3], in good agreement with

the NT length between contacts. Furthermore, in all groups of four at least one

more excitation remains for a comparison between theory and experiment. In all

cases we find good agreement [19].

Sample C - This NT is CVD grown [13] with a diameter of 2.7 nm and L =

750 nm. The contacts are made by evaporating Ti/Au (20/40 nm). Fig. 4.3c

shows dI/dV as a function of V and VG. A very regular pattern of Coulomb

diamonds with four-fold periodicity is displayed together with the excited states.

In addition, up to three inelastic co-tunneling lines [20] are visible (horizontal

lines inside the Coulomb diamonds in Fig. 4.3c).

The observation of three equally sized small diamonds and the fact that the

excitations have the same energy for all four charge states indicate that δ ≈
J + 2dU . We find EC = 6.6 meV, ∆ = 8.7 meV, δ ≈ J = 2.9 meV, and

dU ≈ 0 meV. Theoretically a level separation of 8.7 meV indicates a NT QD

length of ∼ 200 nm, while the distance between contacts is 750 nm. This may

suggest that sample C consists of a QD with NT leads connecting it to the

contacts. This is consistent with the large value for EC . Remarkably, all the

predicted excitation lines are present in the spectrum [21]. Therefore all the

electron states can be assigned (Fig. 4.3d).

In summary, we have presented a complete analysis of the electronic spectrum

in closed NT QDs. Samples with different lengths, production process (CVD

and HiPco) and contact material all exhibit four-fold periodicity in the electron

addition energy. The very regular Coulomb traces and stability diagrams enable

the determination of the ground and excited state electron energies. Knowing

precisely the spectrum of nanotube quantum dots is of fundamental importance in

experiments involving the application of high frequency radiation such as photon-

assisted tunneling and coherent control of the electron quantum states.

We thank R. E. Smalley and coworkers for providing the high-quality HiPco

nanotubes, and C. Meyer, W. Wetzels, M. Grifoni, R. Hanson, K.A. Williams, Yu.

V. Nazarov and S. De Franceschi for discussions. Financial support is obtained

from the Dutch organization for Fundamental Research on Matter (FOM).
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Chapter 5

Electronic transport spectroscopy of

carbon nanotubes in a magnetic field

P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant,
C. Dekker, L. P. Kouwenhoven, and S. De Franceschi

We report magnetic field spectroscopy measurements in carbon nanotube quan-

tum dots exhibiting four-fold shell structure in the energy level spectrum. The

magnetic field induces a large splitting between the two orbital states of each

shell, demonstrating their opposite magnetic moment and determining transi-

tions in the spin and orbital configuration of the quantum dot ground state. We

use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital

contributions to the magnetic moment. A small coupling is found between or-

bitals with opposite magnetic moment leading to anticrossing behavior at zero

field.

This chapter has been published in Physical Review Letters 94, 156802 (2005).
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Chapter5. Electronic transport spectroscopy

of carbon nanotubes in a magnetic field

5.1 Introduction

The remarkable electronic behavior of carbon nanotubes (CNTs) originates from

a particular combination of the symmetry properties of the graphene band struc-

ture and the quantization of momentum imposed by periodic boundary conditions

along the nanotube circumference [1]. This symmetry results in a four-fold de-

generate shell structure in the energy spectrum of CNT quantum dots (QDs). In

early experiments on CNT QDs [3, 4], however, this symmetry was not observed,

presumably due to the presence of defects. Improvements in the quality of CNTs

and advances in nanofabrication techniques have enabled the recent observation

of four-fold degeneracy in the spectrum of CNT QDs [5, 6]. An interesting ef-

fect related to the symmetry of the graphene band structure is the modulation

of the energy gap in CNTs when placed in a parallel magnetic field, B. This

effect, predicted early on [7], has only been recently observed in CNT QDs [8, 9].

These studies, however, did not show evidence of four-fold symmetry and the

link between the energy spectrum and the B-evolution of the QD states was not

established.

Here we report B-dependent electronic transport spectroscopy measurements

on CNT QDs exhibiting four-fold shell structure. We show that: (i) each shell

consists of two orbitals with opposite magnetic moment; (ii) the splitting of the

orbital states with B accounts for all the observed transitions in the spin and

orbital configuration of the CNT QD; (iii) a weak coupling exists between orbitals

with opposite magnetic moment resulting in level repulsion at B=0; (iv) Zeeman

and orbital contributions to the electron magnetic moment can be distinguished

by inelastic-cotunneling spectroscopy.

5.2 Semiconductor carbon nanotube quantum

dots

The electronic structure of CNTs can be derived from the two-dimensional band

structure of graphene. The continuity of the electron wave function around the

CNT circumference imposes the quantization of the wave-vector component per-

pendicular to the CNT axis, k⊥. This leads to a set of one-dimensional subbands

in the longitudinal direction. Due to symmetry, for a given subband at k⊥=-ko

there is a second degenerate subband at k⊥=ko. Figure 5.1a shows in black solid

lines the schematic 1D band structure of a gapped CNT near the energy band

gap. Both valence and conduction bands have two degenerate subbands, labelled

as “+” and “−”. Ajiki and Ando [7] predicted that the orbital degeneracy should
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Figure 5.1: (a) Schematic band structure of a CNT near its energy gap. Black lines
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maxima (minima). Size quantization in a finite-length CNT results in a set of discrete
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are represented by red and blue dotted (solid) lines. Only the orbital splitting of the
energy levels is shown in this figure. (b) Linear conductance, G, vs gate voltage, VG

taken at T=8K. Inset: Device scheme.

be lifted by a magnetic field parallel to the CNT axis (Fig.1a). This effect can be

understood by noting that, due to clockwise and anti-clockwise motion around

the tube, electrons in degenerate “+” and “−” subbands should have opposite

orbital magnetic moments, µorb. In the case of finite-length CNTs, a discrete

energy spectrum is expected from size quantization. The level spectrum of a

CNT QD can then be described as two sets of spin-degenerate levels, E
(n)
+ and

E
(n)
− , where n=1,2,3... is the quantum number in the longitudinal direction (see

Fig. 5.1a). In the absence of inter-subband mixing, E
(n)
+ = E

(n)
− at B=0, and a

four-fold degenerate shell structure is expected for every n. Below we show that

a finite coupling can exist, resulting in a small orbital splitting even at B=0.

The four-fold shell filling emerges in a measurement of the linear conductance,

G, versus gate voltage, VG. This is shown in Fig. 5.1b for a QD device fabricated

from a metallic nanotube with a small band gap [8, 10, 11]. G exhibits Coulomb
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blockade oscillations [2] corresponding to the filling of the “valence” band of the

CNT. From left to right, electrons are consecutively added to the last three elec-

tronic shells, n=3, 2 and 1, respectively. The shell structure is apparent from

the VG-spacing between the Coulomb oscillations. The addition of an electron to

a higher shell requires an extra energy cost corresponding to the energy spacing

between shells. This translates into a larger width of the Coulomb valley associ-

ated with a full shell [12]. The first group of four Coulomb peaks on the left-hand

side of Fig. 5.1b (n=3) are strongly overlapped due to a large tunnel coupling

to the leads and Kondo effect [13]. The coupling decreases with VG, becoming

very small near the band gap, which lies just beyond the right-hand side of the

VG-range shown [14]. Due to this small coupling, the Coulomb peaks associated

with the last two electrons in n=1 are not visible (see Fig. 5.2b).

5.3 Evolution of the ground state of the quan-

tum dot with magnetic field

The shell structure breaks up at finite B (Fig. 5.2a). In each group of four

Coulomb peaks, the first (last) two peaks shift towards lower (higher) VG. This

behavior demonstrates the strong B-dependence of the orbital levels described in

Fig. 5.1a. The magnetic field shifts the “−” orbital levels down in energy, while

the “+” orbitals are shifted up due to their opposite µorb. Consequently, the ad-

dition of the first (last) two electrons to a shell results in a pair of Coulomb peaks

shifting toward lower (higher) VG. For each shell, µorb can be extracted from the

shift, ∆VG(n), in the position of the corresponding Coulomb peaks. Neglecting

the Zeeman splitting, we use the relation eα∆VG(n) = |µorb(n)cosϕ∆B|, where

∆B is the change in B, ϕ is the angle between the nanotube and B, and α is a

capacitance ratio extracted from non-linear measurements. The values obtained

(0.90, 0.80 and 0.88 meV/T, for n=1, 2 and 3, respectively) are an order of mag-

nitude larger than the electron spin magnetic moment (1/2gµB=0.058 meV/T

for g=2), and in good agreement with an estimate of µorb based on the nanotube

diameter [15].

The strong B-dependence of the orbital states induces changes in the orbital

and spin configuration of the QD similar to previous findings in semiconducting

QDs [16]. These are reflected as kinks in the evolution of the Coulomb peaks

with B (Fig. 5.2b). Remarkably, a fully consistent description of the B-dependent

energy spectrum and the ground state spin/orbital configuration can be obtained

through a careful analysis of all the kinks in Fig. 5.2b, as illustrated by the

diagrams in Fig. 5.3. As an example, we examine the non-trivial evolution of
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G ranges from 0 (dark blue) to 2e2/h (dark red). The green dashed lines highlight
the evolution of the Coulomb peaks with B. They are labelled as AA’, BB’... and FF’.
These divide the plot in different Coulomb blockade regions indicated by the number of
electrons in the last two shells (white numbers 0 to VI). The high-G regions (indicated
by yellow dashed lines) in between Coulomb peaks are due to Kondo effect. Orange
numbers indicate the spin in each region. On the right side, the G is multiplied by 20,
so that the triplet-singlet transition is clearly seen along F1G1.

Coulomb peak CC’ (notation defined in Fig. 5.3 caption). Segment CC1 separates

the triplet state in region II from the spin 1/2 state in region III. The incoming

electron tunnels into the E
(2)
− orbital, with spin down, so the slope of the CC1

segment is “−µ
(2)
orb + 1/2gµB”, as noted underneath the corresponding arrow. At

B1C1, a triplet-singlet transition occurs. Therefore C1C2 separates the singlet

state in region II from the spin 1/2 state in region III. Now the incoming electron

tunnels into the E
(2)
+ orbital state with spin up, so the slope of C1C2 is “µ

(2)
orb −

1/2gµB”. Interestingly, at C2 a kink related to an inter-shell orbital crossing

occurs. C2C
′ also separates the singlet state in region II from the spin 1/2 state

in region III (as C1C2), but the incoming electron tunnels into the E
(1)
− state and

with spin up, so the slope changes direction and has a value “−µ
(1)
orb − 1/2gµB”.

The rest of the diagrams can be followed in a similar manner [17].

Note that kinks in Fig. 5.2b are connected by conductance ridges crossing the
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Figure 5.3: Diagrams representing the orbital and spin configuration in the different
regions of Fig. 5.2b. Each row follows the B-evolution of a given Coulomb peak. Each
section in a given row shows two diagrams (separated by a double arrow). These repre-
sent the ground state configuration in the two regions separated by the corresponding
segment of the Coulomb peak evolution with B. In the diagrams, different colors refer
to different shells: orange, blue and black for n=1, 2 and 3, respectively (in our discus-
sion here n=3 is always filled). The last added electron is displayed in red, all the others
in black. Note that, for each diagram, the final state is the same as the initial state for
the diagram immediately below (as indicated by the connected green dashed circles).
We use solid (dotted) lines to represent levels with positive (negative) µorb, shifting
down (up) with B (Zeeman splitting is neglected because it is an order of magnitude
smaller than the orbital splitting). The slope corresponding to the B-evolution of the
Coulomb peaks is also indicated under the double arrow. Top-right inset: qualitative
energy spectrum of the CNT QD as a function of B (Zeeman splitting neglected). Since
∆1,2 6= ∆2,3, the energy spectrum is not periodic and the G(B, VG) pattern in Fig. 5.2
exhibits four-fold symmetry only for B< 2T.

Coulomb valleys. The enhancement of G at these ridges is due to Kondo effects of

different origins. At B1C1, D1E1, and F1G1 the Kondo effect arises from singlet-

triplet degeneracy [18]. At AB, CD, and EF an enhanced Kondo effect is observed

in relation to orbital degeneracy [13]. The Kondo ridges at C2D2 and E2F2 are
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due to the recovery of orbital degeneracy between E
(2)
− and E

(1)
+ [13]. Note that,

as a result of electron-hole symmetry, region III (three electrons in shell n=2) and

region V (one electron in shell n=1) have a certain degree of mirror symmetry,

both in terms of the slope of the Coulomb peaks’ evolution with B and the Kondo

ridges.

5.4 Inelastic cotunneling spectroscopy

The data shown so far have been explained in terms of a B-induced splitting

of orbital degeneracy, as if the two orbital states of every shell were indeed de-

generate at B=0. A small zero-field orbital splitting may in fact exist and be

masked by the Kondo effect at AB, CD, and EF. In order to investigate this

possibility, we considered a different device, which happened to have a much

smaller coupling to the leads and hence much weaker Kondo effect. This device

also exhibits four-fold periodicity in the Coulomb peaks’ pattern. Fig 4c shows

a Coulomb diamond corresponding to one electron in a shell at B=80mT [19].

Inside the diamond, single electron tunneling is suppressed and transport occurs

via higher order cotunneling processes. A sharp increase in the differential con-

ductance, dI/dV , is observed at a bias |V | = Vin ∼ 190µV, denoting the onset

of inelastic cotunneling (IC) [20, 21, 22]. The IC transition takes place between

the two spin-degenerate orbital levels of the same shell thereby indicating the

existence of a finite splitting at B=0. Before discussing the B-dependence of the

IC edges we note that a weak Kondo peak is also present at V =0 (top inset in

Fig. 4a). This Kondo effect arises from the single-electron occupancy of the spin

degenerate orbital ground state.

At finite B, both the Kondo peak and the IC edges split due to Zeeman

spin splitting. This is shown in Fig. 5.4a, where dI/dV is plotted vs (V ,B)

for VG at the center of the Coulomb diamond [19]. In order to identify the

dI/dV steps more clearly, Fig. 5.4b shows the numerical derivative of the dI/dV

plot in Fig. 5.4a (i.e. d2I/dV 2 vs V and B). IC steps in Fig. 5.4a turn into

peaks (V >0) or dips (V <0) in Fig. 5.4b. The zero-bias Kondo peak evolves into

two dI/dV steps at V = gµBB/e (g = 2). These correspond to IC processes

in which the spin state of the QD is flipped, i.e. from |−, ↑> (ground state)

to |−, ↓> (excited state). Each of the two dI/dV steps associated with inter-

orbital IC splits by gµBB/e and they move further apart due the increasing

orbital splitting, 2µorbBcosϕ (ϕ = 33◦). We estimate 2µorb ∼ 350µeV/T i.e.

∼ 3 times the Zeeman splitting [23]. The inner inter-orbital steps correspond to

IC from |−, ↑> to |+, ↑>, and evolve with a slope ±2µorb/e. The outer inter-
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Figure 5.4: (a) Color-plot of the differential conductance, dI/dV , vs bias, V , and
B, measured in the center of the Coulomb diamond (see (c)) at T=30mK. The yellow
dashed lines indicate the traces shown in the top and bottom insets. Insets: (top)
dI/dV trace taken at B=80mT, showing the onset of inter-orbital IC and a small zero
bias peak due to ordinary spin 1/2 Kondo effect. The vertical axis scale spans from
0.02 to 0.08 e2/h. (bottom) Same as top inset, but at B=0.7T, showing the six IC
steps. (b) Numerical derivative of the dI/dV plot in (a). The two inner lines result
from Zeeman splitting of the Kondo peak at B=0. The outer lines represent the B-
evolution of the spin-split orbital levels. (c) dI/dV vs V and VG, for a single electron
in a shell at B=80mT. (d) Calculated B-dependence of the IC spectrum for a single
electron in a spin degenerate level for two coupled orbitals. Red (blue) lines indicate
upwards (downwards) steps in dI/dV with increasing V .

orbital steps correspond to IC from |−, ↑> to |+, ↓>, and evolve with a slope

±(2µorb + gµBB)/e. The six steps (“Zeeman”, “orbital” and “orbital+Zeeman”)

can be seen in the bottom inset to Fig. 5.4a. Such separation between the orbital

and Zeeman contributions to the magnetic moment of electrons in CNTs has not

been shown before. An important consequence of the angular dependence of the

orbital splitting is that researchers have now two “semi-independent” knobs to

control the energy spectrum of CNT QDs (B controls the Zeeman splitting and
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the angle nanotube-B controls the orbital splitting).

The evolution of the outer IC peaks is non-linear at low B, indicating an

anti-crossing between the “+” and “−” orbital levels. Such IC spectrum can

be readily modelled using a Hamiltonian that includes an inter-orbital coupling

besides orbital and Zeeman terms. The corresponding energy eigenstates are:

E = ±
√

(δ/2)2 + (µorbBcosϕ)2 ± 1/2gµBB (the 4 possible sign combinations).

The IC spectrum calculated with this simple model (Fig. 5.4d) clearly accounts

for the experimental data. The non-linear evolution of the orbital splitting with B

constitutes direct evidence that the so-called ”subband level mismatch”, usually

denoted by δ [5], is due to a small, but finite, quantum mechanical coupling

between the two orbital subbands in carbon nanotubes.

We finally comment on the reproducibility of the results shown. G(B, VG)

patterns with a strong orbital contribution to the magnetic moment of electrons

(similar to that in Fig. 5.2b) have been measured in all devices (five from three

different fabrication runs) where four-fold shell filling was observed [24]. Our

study demonstrates that the spin and orbital configuration of CNT QDs can

be understood and controlled by means of a magnetic field. This will prove very

useful in a variety of experiments with CNT QDs, such as the study of the Kondo

effect in degenerate systems or the interaction between orbital states at high B.

Financial support is obtained from the Dutch organization for Fundamental

Research on Matter (FOM).
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Chapter 6

Orbital Kondo effect in carbon

nanotubes

P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant,
C. Dekker, L. P. Kouwenhoven, and S. De Franceschi

Progress in the fabrication of nanometer-scale electronic devices is opening new

opportunities to uncover the deepest aspects of the Kondo effect [1], one of the

paradigmatic phenomena in the physics of strongly correlated electrons. Artifi-

cial single-impurity Kondo systems have been realized in various nanostructures,

including semiconductor quantum dots [2, 3, 4], carbon nanotubes [5, 6] and in-

dividual molecules [7, 8]. The Kondo effect is usually regarded as a spin-related

phenomenon, namely the coherent exchange of the spin between a localized state

and a Fermi sea of electrons. In principle, however, the role of the spin could be

replaced by other degrees of freedom, such as an orbital quantum number [9, 10].

Here we demonstrate that the unique electronic structure of carbon nanotubes

enables the observation of a purely orbital Kondo effect. We use a magnetic field

to tune spin-polarized states into orbital degeneracy and conclude that the orbital

quantum number is conserved during tunneling. When orbital and spin degen-

eracies are simultaneously present, we observe a strongly enhanced Kondo effect,

with a multiple splitting of the Kondo resonance at finite field and predicted to

obey a so-called SU(4) symmetry.

This chapter has been published in Nature 434, 484 (2005).

67
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6.1 Introduction

The simplest Kondo system consists of a localized, spin-1/2 electron coupled to a

Fermi sea via a Heisenberg-like exchange interaction [1]. This simple system can

be realised with a quantum dot (QD) device [2, 3, 4], which is a small electronic

island connected to metallic leads via two tunnel barriers (see Fig. 6.1a). Below

a characteristic temperature TK , the so-called Kondo temperature, a many-body

singlet state is formed between the QD spin and the surrounding conduction

electrons (Fig. 6.1a). This state adds a resonant level at the Fermi energy of

the electrodes enabling the tunneling of electrons across the QD. Such a Kondo

Spin ½

Orbital

Spin-½ Orbital = SU(4)

|+, |+,

| , | ,

+

+

+

+

a

b

c

| |

|+ |

+

Figure 6.1: Spin, orbital and SU(4) Kondo effect in a quantum dot (QD) with an
odd number of electrons. The left (right) panels in a-c represent initial (final) ground
states. a, Schematic illustration of a spin-flip cotunneling process connecting the two
states, | ↑〉 and | ↓〉, from a single orbital state. The intermediate virtual state is shown
in the central diagram. This cotunneling event is one of many higher-order processes
that add up coherently resulting in the screening of the local spin. b, Cotunneling
process for spinless electrons for two degenerate orbital states, labelled |+〉 and |−〉.
The depicted process flips the orbital quantum number from |+〉 to |−〉 and vice versa.
The coherent superposition of orbital-flip processes leads to the screening of the local
orbital quantum number. c, QD with two spin-degenerate orbitals leading to an over-
all four-fold degeneracy. Spin and/or orbital states can flip by one-step cotunneling
processes, indicated by black arrows in the central diagram; the orange arrow refers to
the cotunneling event connecting the two states depicted in the green diagrams. These
processes lead to the entanglement of spin and orbital states resulting in an enhanced
SU(4) Kondo effect.
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Figure 6.2: a, Qualitative single-particle energy spectrum of a CNT QD in a magnetic
field. Red (blue) lines represent orbital states shifting up, |+〉, (down, |−〉) in energy.
Dashed (solid) lines represent spin up (down) states. The yellow rectangle highlights
the region where a purely orbital Kondo effect can occur due to a level-crossing (at
B = B0) between spin-polarized states. The green rectangle highlights the SU(4)
Kondo region. b, Zoom in on the yellow rectangle in a. A finite coupling, δB, between
|+〉 and |−〉 states causes an anticrossing (black lines). At high B, δB is smaller than
the Zeeman splitting, gµBB.

resonance can lead to a strong enhancement of the conductance overcoming the

Coulomb blockade effect [2, 3, 4]. In principle, a Kondo effect may also occur

in the absence of spin if another quantum number, e.g. an orbital degree of

freedom, gives rise to a degeneracy (Fig. 6.1b). In this case, Kondo correlations

lead to the screening of the local orbital“polarization”, and an orbital singlet is

formed through a combination of orbital states. In the presence of both spin and

orbital degeneracy, quantum fluctuations lead to a strong mixing of these two

degrees of freedom (Fig. 6.1c). This increased degeneracy yields an enhancement

of TK [11]. In the low-temperature limit, this system is described by a Hamil-

tonian obeying SU(4)-symmetry, that is, the spin and charge degrees of freedom

are fully entangled and the state of the electron is represented by a 4-component

“hyperspin”[12, 13, 14, 15].

An orbital degeneracy is naturally expected in the electronic structure of car-

bon nanotubes [16] (CNTs). This degeneracy can intuitively be viewed to origi-

nate from the two equivalent ways electrons can circle around the graphene cylin-

der, that is, clockwise and anti-clockwise [17]. The rotational motion confers an

orbital magnetic moment to the electrons. Consequently, the orbital degeneracy

can be split by a magnetic field, B, parallel to the nanotube axis. (Experimental

evidence for this effect, originally predicted by Ajiki and Ando [18], has been re-

cently reported [17, 19, 20, 21].) We label the orbital states of a CNT QD as |+〉
or |−〉 according to the sign of the energy shift they experience under an applied
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B. Size quantization due to the finite CNT length results in two sets of orbital

levels, E
(n)
+ and E

(n)
− where n = 1, 2, 3 is the quantization number. E

(n)
+ = E

(n)
−

at B = 0 (assuming no orbital mixing), resulting in a four-fold degeneracy when

including spin. The orbital and spin degeneracies are simultaneously lifted by a

parallel B (Fig. 6.2d). The use of B allows tuning new degeneracies in connection

with the crossing between levels from different shells. Here we are particularly

interested in the crossing between states with the same spin polarisation, of the

type indicated by the yellow rectangle in Fig. 6.2d. We show below that the

two-fold orbital degeneracy originating from such a crossing gives rise to a purely

orbital Kondo effect. We then consider the case of concomitant spin and orbital

degeneracy at B = 0 (green rectangle in Fig. 6.2d) and present evidence for an

SU(4) Kondo effect.

6.2 Orbital Kondo effect

In a measurement of the linear conductance, G, as a function of gate voltage, VG,

the four-fold shell structure leads to consecutive groups of four closely-spaced

Coulomb blockade oscillations [6, 22]. The B-evolution of such oscillations is

shown in Fig. 6.3a for a CNT QD device (described in the inset and correspond-

ing caption) in a VG-region encompassing two adjacent shells. Coulomb peaks

(highlighted by green lines) appear as lines running from bottom to top and

denote the sequential addition of electrons to the QD; the electron number in-

creasing from left to right. The observed pattern is explained in detail on the

basis of the single-particle spectrum in Fig. 6.2d, and taking into account the

Coulomb interaction between electrons (see appendix).

The Coulomb peaks move to the left or right when increasing B, correspond-

ing to adding the last electron to a |−〉 or |+〉 orbital, respectively. When the

ground state configuration of the QD changes, kinks appear in the B-evolution

of the Coulomb peaks. The two enhanced-conductance ridges at B = B0 ∼ 6 T,

bounded by two such kinks and highlighted by dotted yellow lines, are due to

the crossing between |−〉 and |+〉 states as described in Fig. 6.2d. A detailed

analysis (see appendix) indicates that along these ridges the QD ground state

is doubly degenerate, with the last added electron occupying the level crossing

between |+, ↑〉 and |−, ↑〉 (left ridge) or between |+, ↓〉 and |−, ↓〉 (right ridge).

In the region near the degeneracy point, we are able to measure a small

coupling between orbital states [21], resulting in level repulsion at B = B0. The

energy splitting is directly observed in the spectroscopy data of Fig. 6.3b where

the differential conductance, dI/dV , is shown versus B and bias voltage, V .
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Figure 6.3: Orbital Kondo effect. a, Color-scale representation of the linear conduc-
tance, G, versus B and VG at T ∼ 30 mK (G increases from dark blue to dark red).
The green lines highlight the B-evolution of the Coulomb peaks. The dotted yellow
lines highlight regions of enhanced conductance due to Kondo effect. Roman labels in-
dicate the number of electrons on the last occupied shell near B = 0. Orange numbers
indicate the spin of the ground state. Inset: device scheme. Carbon nanotubes were
grown by chemical vapour deposition on p-type Si substrates with a 250nm-thick surface
oxide. Individual nanotubes were located by atomic force microscopy and contacted
with Ti/Au electrodes (typical separation 100-800 nm) defined by e-beam lithogra-
phy. The highly-doped Si substrate was used as a back-gate. b, Color-scale plot of
the differential conductance, dI/dV , versus V and B along the dashed blue line in
a. The field splits the Kondo resonance into multiple peaks. The two orange lines
highlight the evolution of the peaks associated with the spin and orbital splitting, re-
spectively. The spectroscopy features are more pronounced for V < 0, most likely due
to asymmetric tunnel barriers [30]. The yellow lines highlight the orbital anticrossing
at B = B0 = 5.9 T. c, Coulomb diamond for 1 electron on the last occupied shell at
B = 5.9 T. d, dI/dV vs V at different T , from 25 mK (thick blue trace) to 1.1 K (thick
red trace), at the anticrossing point (B = 5.9 T, VG = 937 mV). Orbital splitting, δB,
and Zeeman splitting, EZ , are visually compared. The split Kondo peaks decrease with
increasing T . Inset: peak height vs T evaluated for the left peak.

In this measurement VG and B are simultaneously varied in order to follow the

middle of the Coulomb valley (dashed blue line in Fig. 6.3a). Here, single-electron

tunneling is suppressed and the spectroscopy is based on higher-order cotunneling
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processes, which lead to an enhancement of dI/dV every time V equals an internal

excitation energy [23]. We focus on the high-B region of Fig. 6.3b. As B is swept

across B0, the anti-crossing between |+, ↓〉 and |−, ↓〉 (depicted in Fig. 6.2b) shows

up in the two dI/dV ridges highlighted by dashed yellow lines. The level spacing,

corresponding to half the distance between these lines, reaches a minimum value

δB = 225 mV at B = B0 = 5.9 T. In a measurement of dI/dV versus (V ,VG)

at 5.9 T, shown in Fig. 6.3c, the higher-order peaks appear as horizontal ridges

inside the Coulomb diamond. Their spacing, 2δB, is independent of VG while

their height increases towards the edges of the diamond.

An individual dI/dV versus V trace taken in the middle of the diamond is

shown in Fig. 6.3d, together with traces measured at higher temperature, T . The

strong overshoot of the dI/dV peaks and their log-T dependence (inset) indicate

an important contribution from Kondo correlations. The observed behaviour

is characteristic of a split Kondo resonance, i.e. a Kondo resonance associated

with two quasi-degenerate states, in line with recent theoretical predictions [24]

and experiments [25]. It is important to note that the Zeeman spin splitting,

EZ = gµBB0, is three times larger than δB, indicating that the Kondo effect

originates entirely from orbital correlations occurring at the crossing between

two spin polarized states, |+, ↓〉 and |−, ↓〉. This conclusion is in agreement with

the zero-field data that we show below. The large Zeeman splitting ensures also

that the observed orbital Kondo resonance provides a conducting channel only

for | ↓〉 electrons, thereby acting as a high-transmission spin filter [12, 13, 14]. On

the other hand, the conductance enhancement that occurs for three-electron shell

filling originates from |+, ↑〉 and |−, ↑〉 states and hence it allows only tunnelling

of | ↑〉 electrons. Switching from one degeneracy to the other is controlled by

simply switching the gate voltage, which then causes the CNT QD to operate as

a bipolar spin filter.

6.3 SU(4) Kondo effect

We now centre our attention on the zero-field regime, where both orbital and spin

degeneracies are expected (green rectangle in Fig. 6.2d). The Coulomb oscilla-

tions corresponding to the filling of a single shell are shown in Fig. 6.4a for a differ-

ent CNT QD device. The four oscillations are clearly visible at 8 K (red trace).

At lower T , the conductance exhibits a pronounced enhancement in regions I

and III, i.e., for 1 and 3 electrons on the shell, and the corresponding Coulomb

blockade valleys completely disappear at 0.3 K (black trace). This conductance

enhancement is a hallmark of Kondo correlations. From the T -dependence (fully
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shown in the appendix) we estimate TK = 7.7 K, an unusually high value that

can be ascribed to the enhanced degeneracy [11]. The important contribution

of the orbital degree of freedom becomes apparent from the B-dependence of G

(Fig. 6.4e). If this Kondo effect was determined by spin only (this could be the

case if one of the orbitals was coupled weakly to the leads), G should decrease on

a field scale B ∼ kBTK/gµB ∼ 6 T due to Zeeman splitting [26]. In contrast, G

decays on a much smaller scale, B ∼ kBTK/2µorb ∼ 0.5 T, which is determined by

the orbital splitting (an estimate of the orbital magnetic moment, µorb, is given

below).

In the non-linear regime, a single zero-bias Kondo resonance appears in regions

I and III (Fig. 6.4b). Contrary to the result in Fig. 6.3c, no orbital splitting is

observed due to the much larger TK (kBTK > δ [12, 13, 21]). In region II,

we observe two peaks at finite bias, reflecting the already known splitting of a

singlet-triplet Kondo resonance [27]. To show that the Kondo resonance in I and

III arises from simultaneous orbital and spin Kondo correlations we investigate

the effect of lifting spin and orbital degeneracies at finite B. As opposed to an

ordinary spin-1/2 Kondo system (where the Kondo resonance splits in two peaks,

separated by twice the Zeeman energy [3, 4, 5, 6, 7, 8]) we find a fundamentally

different splitting. At B = 1.5 T (Fig. 6.4c), multiple split peaks appear in

regions I and III as enhanced-dI/dV ridges parallel to the VG-axis. In region I,

the large zero-bias resonance opens up in four peaks that move linearly with B and

become progressively smaller (Fig. 6.4d). The two inner peaks are due to Zeeman

splitting, i.e. to higher-order cotunneling from |−, ↑〉 to |−, ↓〉 (|−〉 is the lower-

energy orbital). The two outer peaks arise from cotunneling from orbital |−〉 to

orbital |+〉. In the latter case, inter-orbital cotunneling processes can occur either

with or without spin flip. (The corresponding substructure [21], however, is not

resolved due to the broadening of the outer peaks.) Similar multiple splittings of

the Kondo resonance have been observed also in several other samples. According

to recent calculations [28], the observed multiple splitting of the Kondo resonance

constitutes direct evidence of SU(4) symmetry, which implies the concomitant

presence of spin as well as orbital Kondo correlations, confirming our previous

finding.

The slope |dV/dB| of a conductance peak (Fig. 6.4d) directly yields the value

of the magnetic moment associated with the splitting. We obtain a spin magnetic

moment µspin = |dV/dB|spin = 0.06 meV/T∼ µB from the inner peaks, and an

orbital magnetic moment µorb = |dV/dB|orb/ cos ϕ = 0.8meV/T∼ 13µB from the

outer peaks (ϕ is the angle between the nanotube and B) [17]. The same value

of µorb follows from the splitting of the Kondo resonance in region III (Fig. 6.4c).

In this case, however, no Zeeman splitting is observed. Here, the magnetic field
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Figure 6.4: Spin ⊗ orbital Kondo effect. a, Linear conductance, G, vs VG at T = 8 K
and 0.34 K. b, Color-scale plot of dI/dV vs (V ,VG) at T = 0.34 K and B = 0 (dI/dV

increases from blue to red). c, Same as b, but at B = 1.5 T. The circle indicates the
4-fold splitting in region I. d, Color-scale plot of dI/dV versus (V ,B) in the center of
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e, B-dependence of G taken from the zero-bias dashed yellow line in d. G decreases
on a ∼ 0.5 T scale, i.e. ∼ 12 times faster than expected from Zeeman splitting. f, G

vs normalized Zeeman energy, gµBB/kBTK (black trace), and vs normalized orbital
splitting, 2µorbB/kBTK (blue trace). TK = 7.7 K as deduced from a fit of G(T ). (Note
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other, implying that lifting the orbital degeneracy suppresses the Kondo effect. This
demonstrates that the simultaneous degeneracy of orbital and spin states forms the
origin of the strongly enhanced Kondo effect at B = 0.
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induces a transition from SU(4) to a spin-based SU(2) Kondo effect for which

kBTK remains larger than the Zeeman energy, hindering the splitting of the Kondo

resonance up to a few Tesla. Finally, we note that both the one-electron SU(4)

and the two-electron singlet-triplet Kondo effects are characterized by a four-

fold degeneracy, which results in an enhanced TK [27]. Apart from this, the two

phenomena are fundamentally very different. The singlet-triplet Kondo effect is

a spin phenomenon in which the role of the orbital degree of freedom is simply

to provide the basis for the construction of spin-singlet and triplet two-particle

states (see also appendix).

Since orbital Kondo correlations can only arise if the orbital quantum number

is conserved during tunneling, our experimental finding of orbital Kondo physics

in CNT QDs raises an interesting question concerning the nature of the dot-lead

coupling. In our devices, the metal contacts are deposited on top of the CNT

and the QD is formed in the segment between them [29]. It is possible that when

electrons tunnel out of the QD, they enter first the nanotube section underneath

the contacts, where they dwell for some time before moving into the metal. Since

the orbital quantum number is likely conserved in a CNT-CNT tunnel process,

this intermediate step may account for the observed orbital Kondo effect.
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6.4 Appendix

This appendix contains extensive additional discussion and some more data, and

was published as Supplementary Information to the main text.

Orbital degeneracy & Kondo effect

In this section we explain the similarities and differences between the following

types of Kondo effect that arise in the presence of an orbital degeneracy: two-level

spin Kondo effect (TLS-Kondo), orbital Kondo effect (O-Kondo), SU(4) Kondo

effect and singlet-triplet Kondo effect (ST-Kondo).

The presence of a degeneracy in the ground state is essential to all Kondo

effects. In a QD, the simplest Kondo effect occurs for the case of a single electron

in a spin-degenerate (s=1/2) orbital level [2, 3, 4]. A degeneracy may also arise

from degenerate orbitals. If this orbital degree of freedom is conserved during

tunneling, then the orbital quantum number can behave as a spin, and one uses

the term ‘pseudospin’ The quantum fluctuations of this pseudospin can give rise

to an O-Kondo [9, 10, 31] effect similar to the usual spin 1/2 Kondo effect.



6.4 Appendix 79

In the main text we study the Kondo effect that arises from this orbital

pseudospin for a single electron in a CNT QD. This pseudospin gives rise to

SU(4)-Kondo when spin degeneracy is also present and to purely O-Kondo when

spin degeneracy is removed. At zero field, spin and orbital pseudospin play

an equivalent role and they entangle effectively with each other via cotunneling

processes. Note that any of the four degenerate states is accessible via a first order

cotunneling process from any of the other states (see Fig. 6.1c). As a result of this

strong entanglement the state of the dot can be mapped onto a four-component

‘hyper-spin’ space where the Hamiltonian takes a highly symmetric form that

transforms according to the SU(4) group [12, 13, 14]. We therefore denote the

present effect as SU(4)-Kondo. The corresponding phase shift associated with

the transmission of electrons across the dot is π/4. This sets an upper limit

to the conductance of G = 2e2/h[sin2(1/2 · π/2) + sin2(1/2 · π/2)] = 2e2/h.

It is worth noting that the same value for the maximum conductance is also

obtained for the ordinary spin 1/2 and O-Kondo effects, but this time due to a π/2

phase shift and the corresponding symmetry is SU(2) (G = 2e2/h[sin2(1 ·π/2)] =

2e2/h) [11, 12, 13, 14, 15, 32].

The four-fold degeneracy in the SU(4)-Kondo effect leads to a Kondo tem-

perature much higher than in the ordinary spin 1/2 case [11, 12, 13, 14, 15, 32].

A similar enhancement of TK occurs for the TLS-Kondo and ST-Kondo effects,

where the degeneracy is also four-fold. In these cases, however, the physics is

fundamentally different. Basically none of these Kondo effects would exist for

spinless electrons, while the SU(4)-Kondo would be reduced to an SU(2) orbital

Kondo effect in the absence of spin.

The ST-Kondo effect occurs for two electrons in the dot, due to the degeneracy

between two-particle singlet and triplet states. It was discovered in semiconductor

quantum dots [27, 33] giving rise to extensive theoretical work [34, 35, 36, 37, 38,

39, 40, 41]. In the ST-Kondo effect the orbital degree of freedom does not act

as a pseudospin. Instead, it simply provides the extra orbital necessary to form

the two-particle triplet state. In contrast to the SU(4)-Kondo effect, here the 4

states for ST-Kondo are not all mutually connected via a first-order cotunneling

process. For example, the Sz = +1 triplet state, | ↑ ↑〉, cannot go to the triplet Sz

= -1, | ↓, ↓〉 via a first order cotunneling process, since for this process |∆Sz| = 2.

The symmetry of the ST-Kondo effect is not SU(4) as it can be deduced from the

analysis of the corresponding phase shifts [41, 42]. It is worth noting that we also

observe the ST-Kondo effect in our devices in the case when 2 electrons occupy

a shell (this occurs at finite field, B ∼ 0.35 T, for region II (not shown), and

at zero field for the shell on the left side of Fig. 6.6). In our nanotube devices,

as well as in semiconductor vertical quantum dots [27], the upper limit to the
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conductance is G = 4e2/h [37, 39]. Consistent with this expectation we observe

a Kondo-enhanced conductance larger than the one channel limit of 2e2/h (note

the peak conductance of 3e2/h for the shell on the left in Fig. 6.6).

The TLS-Kondo and SU(4) Kondo effects are more difficult to distinguish

experimentally at zero field. They occur both for a single electron in the dot.

In both cases the upper limit to the conductance is 2e2/h and there is a similar

enhancement of TK due to orbital degeneracy. Recent calculations [28] show that

the distinction is possible at finite B because the Kondo resonance splits in two

for TLS-Kondo (TLS-Kondo gives rise to no orbital Kondo resonance) while it

splits in 6 for SU(4) Kondo. These results are in agreement with our experiments.

Besides this, the Kondo effect at large B, due to the recovery of degeneracy be-

tween orbital states with equal spin polarization, proves the presence of orbital

Kondo correlations in CNTs at zero field. Even in the presence of a coupling,

δ, between orbital states, since δ < kBTK (at B = 0), the conditions for the

observations of an SU(4) Kondo effect are fulfilled [12].

Single particle energy spectrum & G(VG, B) spectroscopy

In this section we show how we identify the orbital Kondo effect shown in

Fig. 6.3 with the degeneracy between the equally polarized orbital states |+, ↓〉
and |−, ↓〉 (neglecting the orbital coupling). Figure 6.5a shows the same single

particle energy spectrum as in Fig. 6.2d, where we have added the labels A, B,

C and D. ∆ is the energy spacing between consecutive shells. The diagrams in

Fig. 6.5b represents the orbital and spin configuration of the CNT QD with one

electron in the highest energy shell (the lower energy shells are fully occupied) at

(E, B) positions A to D. In Fig. 6.5c, the correspondence between the single par-

ticle energy spectrum and a G(VG, B) diagram (representing the measurements

shown in Fig. 6.3a) is shown. U is the charging energy.

At zero field (A), the electron occupies a four-fold degenerate state, giving

rise to an SU(4) Kondo effect. This shows up in Fig. 6.5c as a conductance ridge

inside the Coulomb blockade area. As the magnetic field is increased, the de-

generacy is broken (B) and the electron occupies the lowest energy level, that

is |−, ↑〉. At C, there is a level crossing between states |−, ↑〉 and |+, ↓〉. Due

to the exchange interaction, the kink in the B-evolution of the corresponding

Coulomb peak appears at a lower value of the magnetic field (C’ in Fig. 6.5b,c),

when the single particle states have not crossed yet. This kink denotes a singlet

to triplet transition in the region where the QD is occupied by four electrons

(full shell). The singlet-triplet transition for a full shell occurs because one of

the two electrons in energy level |+〉 (specifically |+, ↓〉) promotes to energy level
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Figure 6.5: Single particle energy spectrum & G(VG, B) spectroscopy (see text).

|−, ↑〉 (from the next unoccupied shell) as soon as their energy difference is less

than the exchange interaction. An enhanced conductance ridge is observed cor-

respondingly (see also Fig. 6.3a). From C’ on, the last added electron to the QD

occupies the state |+, ↓〉, until a new level crossing occurs at D, between |+, ↓〉
and |−, ↓〉. Here the single electron can occupy any of the two orbital states, but

in both cases with spin down. A purely orbital Kondo effect can then take place

and a conductance ridge is seen (see Fig. 6.5c and Fig. 6.3a). A similar Kondo

effect can take place in region III. In this case, however, Kondo effect takes place

between states |+, ↑〉 and |−, ↑〉. In a clean CNT, without disorder, this Kondo

effect should take place at the same magnetic field value. Therefore a gate con-

trolled bipolar low-impedance spin filter can, in principle, be realized [12]. By

changing the gate voltage (from region I to III), we can change the filter polarity

while the enhanced conductance due to Kondo effect ensures the low impedance.
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Figure 6.6: Temperature dependence of the linear conductance G (see text).

Temperature dependence

Here we show the T -dependence of the linear conductance data shown in

Fig. 6.4a at B = 0 (Fig. 6.6). Starting from T = 8 K (thick red trace), G

increases by lowering T in the regions corresponding to partially filled shells

and decreases for full shells. In the center of valleys I and III, G exhibits a

characteristic logarithmic T -dependence with a saturation around 2e2/h at low T ,

indicating a fully-developed Kondo effect (see Fig 6.6, top central inset). Similar

T -dependences, although with different values of G0 and TK , are observed for

the neighbouring shells. The coupling to the leads increases as VG decreases (the

measurements are taken on the ‘valence band’ of the small band gap) [21]. From

fits to the formula G = G0/(1 + (21/s − 1)(T/TK)2)s [43], with s=0.21, taken

at the VG values indicated by arrows in Fig. 6.6, we find TK = 6.5, 7.7, and 16

K, respectively. These Kondo temperatures are an order of magnitude higher

than those previously reported for nanotube QDs [5, 6] and comparable to those

reported for single-molecule devices [7, 8]. Such high TK values, and the fact

that G exceeds 2e2/h (the one-channel conductance limit) for two particles, are

signatures of non-conventional Kondo effects (see Orbital degeneracy & Kondo

effect above). The bottom inset in Fig. 6.6 shows the normalized conductance,

G/G0, versus normalized temperature, T/TK , for different shells and for both

one and two electrons in the shell. The observed scaling reflects the universal

character of the Kondo effect. The low-temperature behaviour is fully determined

by a single energy scale, TK , independent of the spin and orbital configuration

responsible for the Kondo effect.
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Quantum supercurrent transistors in

carbon nanotubes

P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven

Electronic transport through nanostructures is greatly affected by the presence

of superconducting leads [1, 2, 3]. If the interface between the nanostructure

and the superconductors is sufficiently transparent, a dissipationless current (su-

percurrent) can flow through the device due to the Josephson effect [4, 5]. A

Josephson coupling, as measured via the zero-resistance supercurrent, has been

obtained via tunnel barriers, superconducting constrictions, normal metals, and

semiconductors. The coupling mechanisms vary from tunneling to Andreev re-

flection [6, 7, 8, 5]. The latter process has always occurred via a normal-type

system with a continuous density of states. Here we investigate a supercurrent

flowing via a discrete density of states, i.e., the quantized single particle energy

states of a quantum dot [9], or artificial atom, placed in between superconducting

electrodes. For this purpose, we exploit the quantum properties of finite-sized

carbon nanotubes [10] (CNTs). By means of a gate electrode, successive discrete

energy states are tuned ON and OFF resonance with the Fermi energy in the

superconducting leads, resulting in a periodic modulation of the critical current

and a non-trivial correlation between the conductance in the normal state and

the supercurrent. We find, in good agreement with existing theory [11], that the

product of the critical current and the normal state resistance becomes an oscil-

lating function, in contrast to being constant as in previously explored regimes.

This chapter has been submitted to Nature.
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Figure 7.1: Measurement scheme and basic sample characterization. a, Diagram
showing the measurement circuit. Grey represents Ti/Al electrodes (10nm/60nm). Ti-
tanium ensures a good electrical contact to the CNT, while aluminium becomes super-
conducting below ∼ 1.3K, well above the base temperature of our dilution refrigerator.
The CNTs are probed in a four-terminal geometry (current bias, voltage measurement).
An important element is the incorporation of three sets of filters for each measurement
wire: a copper-powder filter (Cu-F) for high frequency noise, π-filters for intermediate
frequencies and a two-stage RC filter to suppress voltage fluctuations at low frequen-
cies. The dashed box region indicates the low temperature part of the circuit. The
rest is at room temperature. b, Color-scale plot of the differential resistance, dV/dI,
versus measured voltage, V , and gate voltage, VG at T = 4.2 K. The white arrow
indicates the energy separation between discrete quantum levels in the CNT. c, Dif-
ferential resistance versus measured source-drain voltage, V , at different temperatures
(0.030, 0.47, 0.7, 0.88, 1.02, 1.18, 1.22 and 1.35 K, from bottom to top). The curves are
offset for clarity (by 2kΩ, for 0.47 and 0.7 K, and by 1kΩ for the rest). The features
present in all curves below 1.3 K are due to the induced superconducting proximity
effect. The arrows indicate the superconducting gap at V = 2∆g/e ∼ 250µV. The
dotted lines indicate multiple Andreev reflection (MAR) processes, which manifest as
dips in dV/dI. d, V (I)-characteristics at base temperature showing the modulation of
the critical current, IC , with VG (VG = -2.59, -2.578, -2.57, -2.563, -2.555 and -2.541 V
from black to orange). For currents larger than IC the system goes into a resistive state
(abrupt jump from zero to finite V ).
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7.1 Introduction

In artificial atoms current can flow via discrete states according to the general

process of resonant tunneling, i.e., resonant when the Fermi energy in the leads is

aligned with discrete energy states [9]. The maximum conductance, G, through a

single spin-degenerate energy level depends on the coupling to the leads. For the

case of phase-coherent tunneling, G can reach 2e2/h, when charging effects are

unimportant. If charging effects are significant, still G = 2e2/h can be achieved

(even off-resonance) by means of the Kondo effect [12], which establishes spin co-

herence between the quantum dot (QD) and the leads. An entirely new situation

arises in the case of superconducting leads, i.e., when two superconductors are

coupled via a discrete single particle state. As we show below, the conductance

can reach infinity, that is, a supercurrent can flow through the QD. So, far beyond

the perfect conductance level of 2e2/h occurring when the transmission probabil-

ity reaches one. This zero resistance state is peculiar since just a single discrete

state, that can be occupied only with two spin degenerate electrons simultane-

ously, is available for coupling the collective macroscopic states in the leads. In

contrast to previously accessible regimes, we can study Josephson coupling for

ON and OFF resonant tunneling, which enables a transistor-like control of the

supercurrent through the quantum dot.

The carbon nanotube devices are fabricated by means of standard nanofabri-

cation techniques and geometries (e-beam lithography to define customized elec-

trodes on CNTs grown by chemical vapour deposition on top of oxidized silicon

substrates [13] with two extra important ingredients: the choice of superconduct-

ing material and a multiple-stage filtering system to suppress electronic noise over

a wide frequency range (see Fig. 7.1a and appendix for details).

7.2 Quantum supercurrent transistor action

The quantum behaviour of electrons in carbon nanotubes in good contact with

metallic electrodes emerges clearly in a measurement of the differential resis-

tance, dV/dI, versus measured source-drain voltage, V and gate voltage, VG, as

shown in Fig. 7.1b for one of our devices in the normal state. The differential

resistance exhibits a pattern of high and low conductance regions, typical of nan-

otube devices well coupled to the leads [14, 15], with a characteristic voltage scale,

V ∼ 3.5 mV. This energy corresponds to the energy level separation between the

discrete electronic states due to the finite length of the CNT, ∆E = hvF /2L,

where h is Planck’s constant, vF = 8.1 · 105 m/s is the Fermi velocity in the

CNT, and L its length. The value obtained from this measurement, L ∼ 480 nm,
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Figure 7.2: Quantum supercurrent transistor. a, Variation of the critical current, IC ,
with gate voltage, VG, extracted from b (see c and Fig. 7.3a for high resolution). IC

is measured as the upper half-width of the black region around I = 0. b, Color-scale
representation (in log scale) of dV/dI(I, VG) at T = 30 mK (black is zero, i.e. super-
current region, and dV/dI increases from dark blue to white and red; the scale can
be inferred from d). Both dV/dI and IC exhibit a series of quasiperiodic modulations
with VG as the energy levels in the CNT QD are tuned ON and OFF resonance with
respect to the Fermi energy in the superconducting leads. The sharp vertical features
are caused by random charge switches and shift the diagram horizontally. The narrow
tilted features present in the OFF regions (for example at VG ∼ −2.87 V) occur repro-
ducibly and are associated with Fano resonances [29] (see appendix). c, High-resolution
dV/dI(I, VG) plot of the left-most resonance region in b. The modulation of IC (black
central region) as well as multiple Andreev reflection (up to several orders, the first
two are highlighted by the dashed blue lines) are clearly visible. d, Two representative
dV/dI(I) curves, taken from c at the vertical black and blue dashed lines, illustrating
the different behaviour of the differential resistance in the ON (black curve/axis) and
OFF (blue curve/axis) resonance case. e, Schematic diagram showing a strongly cou-
pled QD in between two superconducting leads. The gate voltage tunes the position of
the Lorentzian level from the ON (red curve) to the OFF (grey dashed curve) state.
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is in good agreement with the length of the nanotube segment in between the

metallic electrodes, 470 nm. When the sample is cooled down below the supercon-

ducting critical temperature of the electrodes (∼ 1.3K), the electronic transport

through the nanotube is strongly affected due to the superconducting proximity

effect [1, 16, 17, 18, 19], which can be viewed as the leakage of Cooper pairs from

a superconductor into a normal metal-type material. This proximity effect is

evident from the observation of multiple Andreev reflections (MAR) [20] and the

flow of a supercurrent through the device (Figs. 7.1c,d). We note that we have

observed similar supercurrents in 4 out of 7 measured metallic CNT devices with

room temperature resistances below 35kΩ (see appendix for additional data and

magnetic field dependence). The most interesting feature of this supercurrent

is that its maximum value (critical current, IC) can be strongly modulated by

means of a gate electrode [21], as shown in Fig. 7.1d. Since the CNTs are metallic,

this means that the supercurrent transistor action must have a different mecha-

nism than in conventional semiconductor structures. It is also remarkable that

the gate voltage necessary to change from maximum to minimum IC is of only

∼ 50 mV, much smaller than the typical gate voltages necessary to significantly

vary the charge density of semiconducting carbon nanotubes [22] or nanowires

with similar geometries [23].

In order to establish the origin of the modulation of IC , it is important to

characterize the sample over a larger gate voltage range. A measurement of

dV/dI(I, VG) (Fig. 7.2b) shows a non-monotonic, quasi-periodic set of low differ-

ential resistance regions, where IC is largest, in between regions of high dV/dI,

where IC is strongly suppressed (Fig. 7.2a). This pattern follows closely the low-

bias pattern of Fig. 7.1b, but now the vertical axis is current, instead of voltage.

The correspondence between the two patterns indicates that the modulation of IC

is due to the tuning ON and OFF resonance with gate voltage of the energy levels

in the CNT with respect to the Fermi energy in the leads (as shown schematically

in Fig. 7.2e). Such Josephson transistor mechanism, purely due to the discrete

nature of the energy levels in a nanostructure (in this case finite-sized CNTs),

has not been previously observed.

Before turning to a more quantitative description, we note that the modula-

tion of IC is followed by a series of dV/dI peaks and dips moving up and down

in the current axis. These are better seen in the high-resolution measurement

shown in Fig. 7.2c and reflect the multiple Andreev reflection processes (see also

Fig. 7.1c) taking place at the CNT-metal interfaces. MAR processes occur at

voltages V = 2∆g/en (∆g is the superconducting energy gap, e is the electron

charge, n an integer number). The dV/dI curves in fact occur at constant volt-

age in this current-biased sample (see appendix). Two individual dV/dI traces
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are shown in Fig. 7.2d for the ON and OFF resonance situations. In both cases

dV/dI exhibits oscillations due to MAR, but the overall behaviour of dV/dI is

very different. In the ON resonance case, dV/dI decreases with decreasing |I|
(on average) until it “switches” to zero when ∼ IC is reached. For the OFF case,

dV/dI increases with decreasing |I| (except at the MAR points), until |I| reaches

a very strongly suppressed value of IC (barely visible in Fig. 7.2d, see Fig. 7.3).

From the normal state resistance values in the ON and OFF resonant cases, we

can conclude that the dV/dI changes between these qualitative behaviours at

values of dV/dI ∼ h/(2e2) ∼ 13 kΩ, i.e., once the resistance per channel of the

CNT becomes of the order of the quantum of resistance (see also appendix).

7.3 Correlation between critical current and nor-

mal state conductance

The correlation between the critical current and the normal state resistance, RN ,

is well studied in S -“normal metal”- S (SNS) structures. As a matter of fact,

for short junctions in diffusive systems and ideal NS interfaces, ICRN ∼ ∆g/e,

i.e. constant [5]. The situation differs when one considers a single discrete energy

level. In this case, the conductance is given by GN = (4e2/h)TBW , where TBW =

Γ1Γ2/((εR/h)2+0.25Γ2) is the Breit-Wigner transmission probability, Γ1,2 are the

tunnel rates through the left/right barriers (Γ = Γ1 + Γ2), and εR is the energy

of the resonant level relative to the Fermi energy in the leads. (Note that we

have added a factor of 4 in GN to account for the spin and orbital degeneracy

of the CNT electronic states [10, 24, 15, 25].) Beenakker and van Houten [11]

have studied the lineshape for the critical current in such a system. For the case

of a wide resonance, hΓ >> ∆g, they obtained IC = I0[1 − (1 − TBW )1/2], with

I0 = 2e∆g/h. Experimentally, we can vary the position of the resonant level by

means of a gate voltage, εR ∝ VG, as shown for the normal state conductance

in Fig. 7.3b. From the maximum value of GN ∼ 3.8e2/h, we deduce a barrier

asymmetry Γ1/Γ2 ∼ 0.64. We use this to fit IC(VG) and GN(VG) (see Figs. 7.3a,b;

red curves). Although the functional form is in good agreement with theory, the

values for Γ, ΓI = 0.85 meV/h and ΓG = 1.36 meV/h, obtained from the IC(VG)

and GN(VG) fits, respectively, differ substantially. Also the value of I0 that we

measure, 4.15 nA, is much smaller than the theoretical value (2e∆g/h ∼ 60 nA).

Such low critical currents are reminiscent of the behaviour of small, underdamped,

current-biased Josephson junctions [26], where the electromagnetic environment

leads to a measured critical current, ICM , much lower than the true critical current

IC . The dynamics of such a Josephson junction can be visualized as that of
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Figure 7.3: Correlation between critical current and normal state conductance and
modulation of the ICRN product. In all panels, the black dots represent the exper-
imental data points (T = 30 mK) and the red/blue curves are theoretical plots. a,
Critical current, IC , versus VG for the resonance shown in Fig. 2c. The theoreti-
cal lines are fits to IC = I0[1 − (1 − Γ1Γ2/((VG − VGR)2 + 0.25Γ2))1/2] (red curve)
and ICM = I0M [1 − (1 − Γ1Γ2/((VG − VGR)2 + 0.25Γ2))1/2]3/2 (blue), as explained
in the main text. VGR is the value of gate voltage on resonance. All gate volt-
ages and Γ’s are converted into energies by multiplying by the gate coupling factor,
α = 0.02 meV/mV, obtained from measurements in the non-linear regime. b, Conduc-
tance, GN , as a function of VG in the normal state (B = 40 mT) and the corresponding
fit to GN = 4e2/hΓ1Γ2/((VG − VGR)2 + 0.25Γ2). c, IC − GN correlation plot. The
data show a non-trivial correlation, with a stronger decrease of IC than expected from
the theoretical curve IC = I0[1 − (1 − 0.25GN )1/2] (red curve). The 0.25 factor sim-
ply denotes that GN is measured in e2/h units. The difference can be almost entirely
accounted for by the influence of the electromagnetic environment, resulting in a mea-
sured ICM = I0[1− (1− 0.25GN )1/2]3/2 (blue curve). An ideal SNS junction, with N a
normal metal with continuous density of states, would exhibit a linear IC −GN corre-
lation curve (grey dashed curve). d, ICRN product versus VG, resulting from dividing
the experimental data and theory curves from a and b. The grey dashed line indicates
a constant ICRN product such as in a SNS junction.

a particle moving in the so-called “tilted washboard” potential [5], where the

driving current corresponds to the tilt in the potential. For the case of low
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dissipation (underdamped junctions), a small fluctuation can cause the particle

to slide down the potential and go into a “runaway” state. This occurs at a value

of I much smaller than the true IC , and it has been shown [26] that the measured

critical current scales as ICM ∝ (IC)3/2. In order to test the applicability of

this model to CNT Josephson junctions, we have fitted ICM = I0M [1 − (1 −
TBW (VG, Γ)1/2]3/2, as shown by the blue curve in Fig. 7.3a. We obtain a similarly

low value of I0M = 4.57 nA and this time, the value of hΓI obtained, 1.22 meV,

is in good agreement with hΓG = 1.36 meV, resulting also in an improved fit to

the data.

The importance of the coupling to the environment manifests itself more ex-

plicitly when examining the correlation between the critical current and the nor-

mal state conductance. We note that in the case of an ideal diffusive SNS junction

the correlation would yield a simple straight line. The experimental data severely

deviate from such curve (Fig. 7.3c). First we consider the expected theoretical

decay for the case of a discrete state (red curve) IC = I0[1 − (1 − 0.25GN)1/2]

(no fitting parameters), with the value of I0 obtained from Fig. 7.3a, and GN

measured in units of e2/h. The comparison with the predicted theoretical line

shows that the measured IC is significantly lower than expected. However, a

remarkably better agreement is found when the electromagnetic environment is

included, as shown by the blue curve, ICM = I0[1 − (1 − 0.25GN)1/2]3/2, indi-

cating the generality of the (IC)3/2 dependence of ICM for very different type of

Josephson junctions [26].

The predicted lineshape of IC (even in the presence of low dissipation) implies

that the ICRN product is not constant, but instead has a maximum on resonance.

We plot in Fig. 7.3d the ICRN product, which indeed exhibits a peak structure.

The red and blue lines, which contain no extra fitting parameters, result from

dividing the theoretical curves in Fig. 7.3a by the red curve in Fig. 7.3b, and

further substantiate the results from earlier figures.

We emphasize that the above-mentioned analysis confirms the correct order of

the relevant energy scales necessary for the observation of the resonant tunneling

supercurrent transistor action [11]: ∆E (∼ 3.5 meV) > hΓ (∼ 1.3 meV) À ∆g

(∼ 125 µeV) > U . The last inequality is justified since signatures of Coulomb

blockade effects are absent in our data, concluding that the charging energy, U ,

is negligible.

We end by noting that, although both superconductivity and the Kondo ef-

fect are collective many-body phenomena, their effect on resonant tunneling is

very different [18]. The Kondo enhancement occurs OFF-resonance, while the su-

perconducting zero-resistance state, as we have shown, is most pronounced ON-

resonance. In fact, we expect that the study of CNT devices with intermediate
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transmission, and thus, larger Coulomb interactions, will enable the observation

of Kondo-enhanced supercurrents in the OFF resonant case [27, 28].
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7.4 Appendix

This appendix contains some additional discussion and data, and has been sub-

mitted as Supplementary Information to the main text.

Filtering system

In this section we describe our filtering system. A filtering system is neces-

sary to prevent electronic noise from reaching the sample (as much as possible)

since this suppresses strongly the critical current. As mentioned in the main text

we use three filters in series for each of the four measurement wires attached to

a nanotube: a copper-powder filter (CuF), a π-filter and a two-stage RC filter
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Figure 7.4: Differential resistance versus V and VG for a different device. Black means
zero and dI/dV increases from blue to red.

(RCF). Three filters are used in order to cover the entire spectrum, from low fre-

quency up to the microwave regime. CuFs are widely used in dilution refrigerator

measuring setups. They are typically used to suppress the high frequency noise

(f ≥ 1 GHz), lowering the effective electron temperature. Our CuF filters consist

of ∼ 1.5 m long manganine wires, and give an attenuation ≥ 50 dB at 1 GHz.

The π-filters cover the intermediate frequency range (∼ 10 MHz - 2 GHz). The

two-stage RC filters are useful in the range few kHz - 100 MHz and are widely

used to measure small critical currents. The advantage of a two-stage versus a

single stage RC filter is that it provides an attenuation of 40 dB per decade (in-

stead of 20 dB/decade) above a certain cut-off frequency. An example of a used

configuration is: R1 = 820 Ω, R2 = 1.2 kΩ; C1 = 20 nF, C2 = 4.7 nF, which gives

a cut-off frequency in the ∼ 10 kHz range.

Additional data & Fano resonances

Here we show additional data from a different device. Figure 7.4 shows a

dV/dI versus (I, VG) plot, similar to Fig. 7.2b. Both multiple Andreev reflection

and a modulation of the critical current as a function of gate voltage are clearly

visible.

In the center of the figure a sharp resonance can be seen, similar also to the

sharp resonances in Fig. 7.2b. Such resonances have been observed and discussed

in the context of carbon nanotubes strongly coupled to the leads [30, 29] and

attributed to Fano resonances [31], although their origin have not been fully es-

tablished. Two interfering channels are needed for Fano resonances to occur, a

strongly coupled one and a weakly coupled one. The weakly coupled one can be
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an impurity, an inner shell in a mutiwall tube or a weakly coupled tube in a thin

rope. It has also been suggested that intrinsic resonances may arise for individual

single wall tubes [29], due to an asymmetric coupling of the two orbital channels

in carbon nanotubes. We have examined the diameters of our samples and they

are in the 2 to 7 nm range. While single wall nanotubes of 2-3 nm are usually

obtained with our CVD growth method [32], a diameter like 7 nm is more rare.

We note however that single wall NTs grown by CVD up to 13 nm in diameter

have been reported [33, 34]. Therefore it cannot entirely be excluded that the

Fano resonances are due to the fact that those tubes measured are not individual

single wall tubes. Nevertheless, the conductance of our devices in the normal

state gets very close to, but doesn’t exceed, 4e2/h, similar to Ref. [29]. Future

studies are necessary to clarify the precise origin of the Fano resonances.

Multiple Andreev Reflection

In order to visualize the regions of supercurrent flow, figure 7.2 shows differ-

ential resistance plots as a function of current bias. Because of this, the mul-

tiple Andreev reflection (MAR) lines move up and down along the plots (e.g.,

Fig. 7.2b,c). Figure 7.5 shows the differential conductance, dI/dV (in log scale),

versus measured source-drain voltage and gate voltage (black/dark red is low

dI/dV and yellow is high dI/dV , the white features at low V are due to the

conversion from current biased to voltage biased near supercurrent). The fea-

tures in Fig. 7.5 are in good agreement with previous MAR results in carbon

nanotubes [20]. For example, the Andreev reflection peaks at 2∆g and 2∆g/2 are

clearly visible OFF resonance, while they become smeared ON resonance. Also,

as predicted theoretically [20, 35], the subgap structure becomes very complex in
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Figure 7.6: Differential resistance versus I and B showing the supression of the
proximity effect for the ON (a) and OFF (b) resonance case.

the vicinity of the resonances.

Magnetic field dependence

The application of a magnetic field, B, suppresses superconductivity in the

electrodes and, thus, suppresses the proximity effect associated-features in the

transport through the nanotube. As an example we show in Figs. 7.6a,b the

suppression of MAR and IC with B (shown for the device in Fig. 7.4; other devices

exhibit the same behaviour). Figure 7.6a corresponds to the ON resonance case,

while fig. 7.6b corresponds to the OFF resonance case. As mentioned in the

main text, the differential resistance in the ON-resonance case is lower when

the leads are superconducting. On the other hand, in the OFF-resonance case,

there is a large ‘peak’ in dV/dI at low energies. [Note that the vertical scale

is very different for the two figures.] Similar peaks in dV/dI (although smaller

in magnitude) have been observed previously [17] and attributed to electron-

electron interactions. While we cannot rule out such effects (for example a small

Coulomb interaction effect), it has been shown [20] that a non-interacting model

which takes into account only a resonant level in between two superconducting

leads, can yield also such an enhancement of the differential resistance at low

energies in the OFF-resonance case. A more detailed study, both theoretical and

experimental, should shed light on the relative importance of each of the possible

effects accounting for these peaks.



Chapter 8

Tunneling in suspended carbon

nanotubes assisted by longitudinal

phonons

S. Sapmaz, P. Jarillo-Herrero,
Ya. M. Blanter, C. Dekker, and H.S.J. van der Zant

Current-voltage characteristics of suspended single-wall carbon nanotube quan-

tum dots show a series of steps equally spaced in voltage. The energy scale of

this harmonic, low-energy excitation spectrum is consistent with that of the lon-

gitudinal low-k phonon mode (stretching mode) in the nanotube. Agreement is

found with a Franck-Condon-based model in which the phonon-assisted tunnel-

ing process is modeled as a coupling of electronic levels to underdamped quan-

tum harmonic oscillators. Comparison with this model indicates a rather strong

electron-phonon coupling factor of order unity.

This chapter has been submitted to Physical Review Letters.

97



98

Chapter8. Tunneling in suspended carbon nanotubes assisted by longitudinal

phonons

8.1 Introduction

In nano-electromechanical systems (NEMS), mechanical motion affects electrical

current and vice versa [1, 2, 3, 4]. Of special interest is the study of electron-

phonon coupling in these devices since tunneling of a single electron may induce a

displacement of the movable structure [5, 6, 7, 8, 9, 10]. The interaction strength

is characterized by the dimensionless electron-phonon (e-ph) coupling constant g,

which is proportional to the ratio of the classical and the quantum displacement.

In bulk systems the e-ph coupling is generally weak and the coupling constant is

orders of magnitude smaller than one. However, since the coupling dramatically

increases with decreasing device mass, NEM-devices may exhibit an intermediate

to strong e-ph coupling [11, 12, 13]. In this regime, current-voltage characteristics

are expected to exhibit additional steps whose height can be used as an estimate

of g. For example, g is around one in the C60 molecular devices of Ref. [11], while

measurements on different C140 samples [12] indicate a value of g between 0.2

and 8.

Carbon nanotubes (NTs) are ideal systems for exploring electro-mechanical

effects since they have a small diameter, a low mass, and can be defect free on

a molecular level. In experiments on suspended nanotubes, different methods

have already been used to probe the bending [14, 15] and radial breathing mode

(RBM) [16]. The measurements show that the free-hanging tubes operate in the

underdamped regime of low dissipation. For the fundamental bending mode the

reported quality factor is about 100; for the RBM it is estimated as high as 10000.

Here we present electronic transport spectroscopy measurements on suspended

carbon nanotubes, which show signatures of phonon-assisted tunneling, evidenced

by the presence of a series of steps in the I − V characteristics. Such steps form

a harmonic low-energy spectrum, whose energy scale and length dependence are

consistent with that of the longitudinal stretching mode. Comparison with the

Franck-Condon theory shows that the e-ph coupling constant is of order one.

Devices are fabricated by locating individual nanotubes (laser ablation and

CVD) on a Si/SiO2 substrate using an atomic force microscope (AFM) with

respect to predefined markers. Subsequently, the electrodes are made using con-

ventional e-beam lithography techniques and thermal evaporation of Cr (5 nm)

and Au (50 nm). The nanotubes are suspended by removing the underlying SiO2

in a wet etch step using buffered HF [17]. A schematic sample geometry and

SEM micrograph are shown in Fig. 8.1. In the experiment the source and gate

voltage are defined with respect to the drain, which is connected to ground.
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b)a)

Gate

SiO2

Source
Drain

NT

L

Figure 8.1: (a) Schematic drawing of a suspended nanotube clamped between two
Cr/Au electrodes on top of silicon oxide. The underlying oxide is partially removed
by a wet etch step leaving the nanotube suspended. The highly doped silicon plane is
used as a global gate to tune the electrostatic potential of the nanotube. (b) Scanning-
electron microscope micrograph of a suspended nanotube. The scale-bar represents
200 nm.

8.2 Stability diagrams and low-energy spectra

In Fig. 8.2 we show stability diagrams for three nanotubes measured at 10 mK

(a) and 300 mK (b,c) where the differential conductance, dI/dV , is plotted versus

bias and gate voltage. The three metallic nanotubes have a length between source

and drain contacts, L, ranging from 0.14 to 1.2 µm. Their diameter d is between

1 and 1.4 nm as determined from AFM imaging. In the diamond shaped regions

(Coulomb diamonds) the current is zero due to Coulomb blockade, and the charge

number in the dot is fixed. Regular and closing Coulomb diamonds indicate single

dot behavior [18, 19] in all three samples for the gate range shown. Notice that

the diamonds in Fig. 8.2a do close, as shown in the inset, which was taken at

a higher temperature (300 mK) in a different cooldown. The low-bias current,

however, is suppressed which could be a signature of strong electron-phonon

coupling [5, 9, 10].

Excitations of a quantum dot appear as lines running parallel to the Coulomb

diamond edges in the stability diagrams [18]. At such a line, a new electronic level

becomes resonant with the leads and an additional transport channel opens up.

The energy of an excitation can be determined by reading off the intersection

point between the excitation line and the Coulomb diamond edge on the bias

axis [19]. Furthermore, the excitations correspond to the charge state of the

Coulomb diamond they end up in. Electronic excitations in nanotubes typically

differ between adjacent charge states [20]. In Fig. 8.2a, a dense set of equally

spaced excitation lines (starting from the first electronic excitation) is clearly

visible near VG = 210 mV and 230 mV, i.e., adjacent charge states exhibit a

similar set of excitations with approximately the same energy spacing. The fact



100

Chapter8. Tunneling in suspended carbon nanotubes assisted by longitudinal

phonons

-2480 -2460 -2440

6

0

6-

V
(m

V
)

V (mV)
G

b)

-550 -500 -450 -400

10

5

0

-5

-10

V
(m

V
)

V (mV)
G

c)

210 240

-3.0

-2.5

-2.0

V
(m

V
)

V (mV)
G

220 230

100 150 200 250

- 5.0

- 2.5

0.0

2.5

5.0

3

-3

-3.5

-4.0
a)

Figure 8.2: Stability diagrams for three different suspended nanotubes with a length
in between contacts of 1.2 µm, 420 nm, and 140 nm for (a),(b) and (c) respectively.
The conductance (dI/dV ) is plotted as a function of source-drain voltage, V , and gate
voltage, VG. Blue corresponds to low and red to high conductance. Measurements
have been performed at T=300 mK except in (a), where the base temperature was
10 mK. (a) Small region of a stability diagram showing closely spaced sets of lines
running parallel to the Coulomb diamond edges for two charge states. At low bias, a
strong suppression of the conductance is present. Red lines indicate positive differential
conductance; blue lines negative differential conductance. Inset: regular diamonds that
close are observed in a different cool down at T= 300 mK. (b) and (c) Diamond
crossings for two other samples, again showing lines parallel to the diamond edges with
energy separations smaller than expected for electronic excitations.

that excitations occur primarily in one direction is due to asymmetric tunnel

barriers [19].

The energy differences between the excitation lines of Fig. 8.2 are shown in the

insets of Fig. 8.3. In all three cases, the excitation energy is an integer multiple

of the first (fundamental) excitation. Thus, they form a harmonic spectrum
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with up to 5 levels. A linear fit yields an excitation energy of 140, 690, and

530 µeV for the tubes with length 1.2 µm (a), 420 nm (b), and 140 nm (c),

respectively. These values are an order of magnitude smaller than the expected

mean electronic level spacing given by ∆ = hvF /2L with h the Planck constant

and vF = 8.1 · 105 m/s [21] the Fermi velocity.
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Figure 8.3: Current as a function of source-drain voltage at a gate voltage indicated
by the green lines in Fig. 8.2. The red lines represent the step heights calculated
in the Franck-Condon model (see text) for an electron-phonon coupling parameter of
0.95, 1.1, and 0.5 for (a), (b), and (c) respectively. In the insets, the energy separation
between the peaks or steps (lines in Fig. 2) is plotted, showing equally spaced, harmonic
spectrum. The slope of the drawn line is 140, 690, and 530 µeV for the insets of (a),
(b), and (c) respectively.

8.3 Vibrational states and Franck-Condon model

A more natural explanation for the observed harmonic spectra is a vibrational

mode coupled to an electron tunneling [11]. Multiple steps with identical spacing

would then arise from the excitation of an integer number of vibrational quanta.

Indeed, the observed equidistant energy separation is consistent with that ex-

pected from the longitudinal stretching mode in the nanotubes. In Fig. 8.4,

we plot the energy of important low-energy vibrational modes of single-wall na-

notubes [22, 23]. For comparison, we plot the mean electronic energy level sep-

aration, ∆, in black. Blue squares correspond to the fundamental excitation

energy extracted from the linear fits in the insets of Fig. 8.3. The energy of

the radial breathing mode (green) does not depend on the nanotube length and

equals 28 meV/d(nm). The bending mode (red) has a L−2 dependence [25],

and an energy much smaller than the measured excitation energy. The stretch-

ing mode vibration energy (blue) is inversely proportional to the length [24],
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E = (nh/L)
√

Y/ρm, where Y is Young’s modulus, ρm is the density and n

is the vibrational quantum number. For nanotubes with ρm = 1.3 g/cm3,

Y = 1 TPa the vibrational energy corresponding to the fundamental mode is

∼ 110 µeV/L(µm) [23]. As Fig. 8.4 shows, the data are in good agreement with

these predicted values.
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Figure 8.4: Energy scales of different vibrations and electronic excitations plotted
on a log scale for a nanotube with a 1.4 nm diameter. The radial breathing mode
(green) does not depend on the length L. The bending mode vibrations(red) have a
L−2 dependence. The mean electronic level spacing (black) and the stretching mode
(blue) vibrations depend inversely on the length.

The coupling of electronic levels with vibrational modes (quantum harmonic

oscillators) can be described in terms of the Franck-Condon model [26]. According

to the Franck-Condon principle, an electron in an electronic transition moves so

fast that the nuclear positions are virtually the same immediately before and

after the transition. As a consequence, the transition rate is proportional to the

Franck-Condon factors defined as the square of the overlap integral between the

vibrational wavefunctions of the two states involved. An important parameter

is the electron-phonon coupling factor, g = 1
2
( x

x0
)2. This is the ratio of the

classical displacement length, x, to the quantum mechanical oscillator length,

x0 =
√
~/mω. Alternatively, g = F 2

2~mω3 , where F is the force on, m the mass of,

and ω the frequency of the oscillator.

For low damping, the vibrational levels remain sharp and the Franck-Condon
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model predicts steps in the current-voltage characteristics, that are equally spaced

in energy (bias voltage). In the presence of strong relaxation, the normalized step

heights are given by [5]: Pn = e−ggn/n!. In the strong coupling (g À 1) limit, the

height of the first steps is exponentially suppressed (phonon blockade) [5, 9, 10].

Multiple steps only arise if g is of the order of one or larger and the observation

of a spectrum of equally spaced excitation lines therefore indicates that the e-ph

coupling in our suspended nanotubes must be rather strong.

In Fig. 8.3, the red curves represent the step heights (Pn) given by the Franck-

Condon model with strong relaxation discussed above. The symbols are the

experimental curves taken at the green lines in Fig. 8.2. Considering the simplicity

of the model, reasonable agreement is obtained in all three cases. The comparison

yields an estimate of g of 0.95, 1.1, and 0.5 in Fig. 8.3a, b, and c respectively,

indicating that it is approximately length independent. We have also performed

a similar analysis at other gate voltages yielding the same g-values.

The theoretical curves in Fig. 8.3 do not exactly follow the measured ones.

Better fits may be obtained if the influence of a gate voltage and asymmetric cou-

pling is considered [5], or if coupling to excited electronic states [27] is considered,

or if the influence of damping or non-equilibrium phonons (weak relaxation) is

taken into account. In the latter case the peak heights are expected to display

a non-systematic dependence on g and peak number [9]. Consideration of these

effects is, however, beyond the scope of this paper.

The high value of the e-ph coupling (g ∼ 1) is remarkably since in graphite

the coupling between electrons and longitudinal phonons is weak. A source of

intermediate to strong coupling could be the interaction between longitudinal and

transverse vibrations [28]. Alternatively, we find that in suspended nanotubes

the same e-ph coupling mechanism as in the bulk [29] can lead to a g ∼ 1 if

the electron density is inhomogeneous. The calculation proceeds as follows: The

interaction energy of electrons with the polarization charge is characterized by

the energy

W = −
∫

dxdx′ρ(x)K(x− x′)
∂P

∂x′
. (8.1)

Here, ρ(x) is the density of excess charge produced by one electron, K(x− x′) is

an interaction kernel, which we approximate by δ(x−x′) for the case that interac-

tions are effectively screened by the gate, and P (x) ≈ eρ0z(x) is the polarization

vector. The quantity ρ0 ∼ kF is the total electron density and z(x) is the displace-

ment, which in the single-mode approximation becomes z(x) = An sin(πnx/L).

Calculating the force F = −∂W/∂An, we obtain

F =
eρ0πn

L

∫ L

0

dx ρ(x) cos
πnx

L
. (8.2)
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If the excess charge density is uniform, ρ(x) = e/L, F = 0 for all modes. Incor-

poration of interactions that are screened at distances longer than the distance

to the gate, yields a force that scales as L−2. In this case, the coupling parame-

ter g also scales as L−2 and typical values are in the order of 10−3, in apparent

contradiction with the experimental data.

Assuming that the charge is localized in the center of the tube, ρ(x) = eδ(x−
L/2), the force is zero for odd harmonics, but for even harmonics, n = 2l, it

reads Fl = (−1)le2ρ02πl/L. This results in a coupling parameter that is length

independent and scales as l−1: higher modes are coupled weaker to electrons.

Numerical estimates show that g ∼ 1. Localization of an electron in a point

away from the middle produces coupling to both odd and even modes. Note that

the electron does not have to be strongly localized to produce a g ∼ 1. Such

a non-uniform density can be created by impurities located in the substrate, or

induced by a redistribution of electrons in a suspended tube bent by a underlying

gate electrode [30].

An interesting feature of the data is the appearance of negative differential

conductance (NDC) in the current-voltage characteristics. NDC is very pro-

nounced in Fig. 8.3a, but also present in Fig. 8.3b,c. Although several expla-

nations for NDC have been put forward, its origin remains unclear. Koch and

von Oppen [10] showed that for low relaxation and strong e-ph coupling, NDC

features appear, although they do not follow regions with strong positive dif-

ferential conductance (PDC) as in our data. McCarthy et al. [6] have shown

that NDC features can be due to an e-ph coupling that is voltage dependent.

Their calculations also reproduce the catastrophic current decrease of Fig. 8.3a

for bias voltages higher than 3 mV. However, at the moment we do not know

how such a voltage dependence would arise in suspended tubes. Finally, Nowack

and Wegewijs [27] have considered a Franck-Condon model with a coupling to

an electronic and its excited state. They show that the competition between

the two states generates strong NDC effects. NDC and PDC lines may have the

same gate voltage dependence preceded by a region of suppressed current. This

scenario may especially be relevant for the data in Fig. 8.3a.

In summary, transport measurements on suspended SWNTs show signatures

of phonon-assisted tunneling, mediated by longitudinal vibrational (stretching)

modes. The current-voltage characteristics show multiple steps whose heights are

in reasonable agreement with the Franck-Condon predictions if the e-ph coupling

constant is of order unity. Suspended nanotube quantum dots form an interesting

model system for future studies on the interaction between single electrons and

quantized phonons in the intermediate to strong electron-phonon coupling limit.
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Summary

Quantum transport in carbon nanotubes

Electronic transport through nanostructures can be very different from trans-

port in macroscopic conductors, especially at low temperatures. Carbon na-

notubes are tiny cylinders made of carbon atoms. Their remarkable electronic

and mechanical properties, together with their small size (a few nm in diameter),

make them very attractive for scientific research, both from the basic as well as

from the technological point of view. This thesis describes experimental research

aimed at understanding electronic transport through carbon nanotubes (CNTs)

at low temperatures. At these temperatures (below a few Kelvin), the quantum

properties of CNTs have a strong influence in their transport behavior. When two

metallic electrodes are deposited on top of a nanotube, tunnel barriers develop at

the nanotube-metal interfaces, leading to the formation of a quantum dot within

the nanotube segment in between the electrodes. A quantum dot, or artificial

atom, is a small box where we can place electrons in discrete energy states, due

to quantum confinement in the three directions of space. The short spacing in

between the electrodes (∼ few hundred nm), together with the small diameter of

carbon nanotubes, makes it possible to observe the quantum properties of carbon

nanotubes at temperatures below ∼ 10 K.

Depending on the coupling between the nanotube and the leads, different

regimes can be experimentally studied. For very opaque tunnel barriers, the

electrons are strongly confined in the quantum dot (QD), the electrostatic in-

teractions between electrons, or charging effects, are large, and transport occurs

via single electron tunneling processes. In this ‘closed QD’ regime, the energy

levels have a very small energy width and we can perform accurate measure-

ments to determine the spectrum of short CNTs. Chapters 3, 4, and 8 study

nanotubes in this regime. As the transparency of the barriers increases, the con-

finement weakens and higher order tunneling processes become more probable.

We can still perform spectroscopy by means of inelastic cotunneling, and inter-

esting phenomena involving the spin coherence between the electrons in the QD
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and those in the leads, namely the Kondo effect, can occur. This intermediate

transparency regime is studied in chapters 5 and 6. Finally, when the barriers

are rather transparent and the interactions between electrons can be neglected,

transport is dominated by quantum interference. We call this the ‘open QD’

regime. The discreteness of the energy spectrum manifests itself in phenomena

such as resonant tunneling, which is explored in chapter 7 for the especial case of

superconducting leads. Altogether, the chapters in this thesis cover a wide range

of phenomena observed in these different regimes.

Chapter 3 reports the first observation of the energy spectrum of semicon-

ducting carbon nanotubes. We realize a few electron-hole QD and find that the

spectra of electrons and holes in CNTs are symmetric, as expected from the sym-

metry in the band structure. Such spectra could not be compared before for any

other type of QDs.

In chapters 4, 5, and 6 we study different effects of the double orbital degen-

eracy of the band structure of CNTs on their transport properties. Chapter 4

concerns the excitation spectrum of metallic nanotubes. By using a model which

includes charging and exchange effects, as well as the four-fold degeneracy of the

electronic states in CNTs, we are able to understand the ground state addition

energies of NT QDs and their excitation spectra. This four-fold degeneracy man-

ifests itself also in the addition energy spectra of small band gap CNTs, as shown

in chapter 5, where this time we focus on the effects of an axial magnetic field

on the transport through the NT QDs. We study the evolution of the Coulomb

peaks with magnetic field and are able to identify the different orbital and spin

transitions in the ground state of the QD. Such degree of understanding is un-

precedented for NT QDs. By means of inelastic cotunneling spectroscopy, we

also show that there are two contributions to the magnetic moment of electrons

in CNTs: orbital and spin, and we observe all possible manifestations of it in the

cotunneling spectrum.

The orbital magnetic moment can be thought off as a pseudospin, because it

behaves similar to the electron spin. In chapter 6 we focus on the consequences of

this pseudospin and the orbital degeneracy associated with it on the Kondo effect

in CNTs. We demonstrate that the orbital pseudospin leads to an orbital Kondo

effect at high magnetic field, i.e., a Kondo effect with spin polarized electrons. At

zero magnetic field, the spin and pseudospin degrees of freedom combined give

rise to an SU(4) Kondo effect, manifested as a multiple splitting of the Kondo

resonance at finite fields.

In chapter 7 we study how is the transport through a CNT in the open QD

regime modified by the presence of superconducting leads. Remarkably, we are

able to measure small supercurrents flowing through the NTs. By means of a



109

gate electrode, we tune the energy levels of the NT QD ON and OFF resonance

with respect to the Fermi energy in the leads, resulting in a resonant tunneling

transistor-like action of the critical currents through the nanotubes. Our ex-

periment confirms existing theoretical predictions on how a supercurrent flows

through a system with a discrete density of states, i.e., a QD.

The last chapter of the thesis is devoted to the study of electronic transport

on suspended CNT QDs. We measure a set of anomalously small excitation

energies, which cannot be identified as due to electronic excitations and we pro-

pose that they are due to phonon assisted tunneling processes in the QD. The

current-voltage characteristics indicate a rather strong electron-phonon coupling

in suspended carbon nanotubes.

Pablo Jarillo-Herrero

September 2005



110 Summary



Samenvatting

Kwantum transport in koolstof nanobuisjes

Elektrisch transport door nanostructuren kan erg verschillen van transport

door macroscopische geleiders, in het bijzonder bij lage temperaturen. Koolstof

nanobuisjes zijn kleine cilinders van koolstof atomen. De opmerkelijke elektrische

en mechanische eigenschappen, samen met de kleine afmetingen (enkele nm in

diameter), maken ze erg interessant voor fundamenteel onderzoek, zowel vanuit

fundamenteel als toegepast oogpunt.

Dit proefschrift beschrijft experimenteel onderzoek gericht op het begrijpen

van elektrisch transport door koolstof nanobuisjes (CNTs) bij lage temperaturen.

Bij deze lage temperaturen (beneden een paar Kelvin), hebben de kwantum eigen-

schappen van CNTs een belangrijke invloed op het elektrisch gedrag. Wanneer

twee metallische elektrodes worden aangebracht op een nanobuisje ontstaan tun-

nel barrières aan het metaal-nanobuisje grensvlak, resulterend in een kwantum

dot in het nanobuisje segment tussen de elektrodes. Een kwantum dot, of arti-

ficieel atoom, is een klein doosje waarin we elektronen kunnen plaatsen in dis-

crete energietoestanden vanwege de kwantum opsluiting in de drie ruimtelijke

dimensies. De kleine afstand tussen de elektrodes (∼ een paar honderd nm), in

combinatie met de kleine diameter van de nanobuisjes, maakt het mogelijk om

kwantum eigenschappen van de koolstof nanbuisjes waar te nemen bij tempera-

turen beneden ∼ 10 K.

Afhankelijk van de koppeling tussen het nanobuisje en de contacten, kun-

nen verschillende regimes worden bestudeerd. Voor erg gesloten barrières zijn

de elektronen gelokaliseerd in de kwantum dot (QD) en zijn de elektrostatis-

che interacties tussen de elektronen (ladingseffecten) sterk, waardoor transport

plaatsvindt via het tunnelen van enkele elektronen. In dit ‘gesloten QD’ regime,

is de breedte van de energieniveaus erg klein en kunnen we nauwkeurige metin-

gen uitvoeren om het spectrum te bepalen van korte CNTs. Hoofdstukken 3, 5

en 8 gaan over nanobuisjes in dit regime. Als de transparantie van de barrieres

groter wordt, wordt de lokalisatie kleiner en worden hogere orde tunnel processen
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waarschijnlijker. We kunnen nog steeds spectroscopie uitvoeren met behulp van

inelastische co-tunneling en interessante fenomenen zoals het Kondo effect kun-

nen optreden, welke betrekking hebben op de spin coherentie tussen de elektro-

nen in de QD en die in de contacten. Dit tussenliggende regime in transparantie

wordt behandeld in hoofdstukken 5 en 6. Als de barrières behoorlijk transparant

zijn en interacties tussen elektronen kunnen worden verwaarloosd, is transport

gedomineerd door kwantum interferentie. We noemen dit het ‘open QD’ regime.

Het discrete energie spectrum resulteert in bijvoorbeeld resonante tunneling, wat

wordt behandeld in hoofdstuk 7 voor het bijzondere geval van supergeleidende

contacten. Samen beslaan de hoofdstukken van dit proefschrift een breed scala

aan fenomenen in deze verschillende regimes.

Hoofdstuk 3 gaat over de eerste meting van het energie spectrum van halfgelei-

dende koolstof nanobuisjes. We realiseren een QD met maar enkele elektron- en

gaten en vinden dat het spectrum van elektron en gaten in de CNTs symmetrisch

is, zoals verwacht vanwege de symmetrische banden structuur. Zulke spectra kon-

den in andere typen QDs niet worden vergeleken.

In hoofdstukken 4, 5 en 6 bestuderen we verschillende effecten op de trans-

porteigenschappen van CNTs die te maken hebben met de dubbele orbitale ont-

aarding van de banden structuur. Hoofdstuk 4 behandelt het excitatie spectrum

van metallische nanobuisjes. Door gebruik te maken van een model dat reken-

ing houdt met ladings-effecten, exchange interactie en de 4-voudige ontaarding

van de elektronische toestanden in CNTs, kunnen we de grondtoestand additie

energieën en hun excitatie spectra begrijpen. Deze 4-voudige ontaarding manifes-

teert zichzelf ook in de additie spectra van kleine bandgap CNTs, zoals beschreven

is in hoofdstuk 5. Hier focusseren we op effecten van een axiaal magnetisch veld

op de transporteigenschappen door NT QDs. We bestuderen de evolutie van

de Coulomb pieken in een magnetisch veld en zijn in staat om de verschillende

orbitale en spin transities te identificeren in de grondtoestand van de QD. Door

middel van co-tunneling spectroscopie kunnen we ook laten zien dat er twee bij-

dragen zijn aan het magnetisch moment van elektronen in CNTs: orbitaal en

spin. In het co-tunneling spectrum kunnen we alle mogelijke combinaties hiervan

bestuderen.

Het orbitale magnetisch moment kan worden gezien als een pseudospin omdat

het zich gedraagt als een elektron spin. Hoofdstuk 6 gaat over de gevolgen van

deze pseudospin, en de geassocieerde orbitale ontaarding, op het Kondo effect in

CNTs. We laten zien dat de orbitale pseudospin leidt tot een orbitaal Kondo

effect bij hoge magneetvelden, oftewel een Kondo effect met spin gepolariseerde

elektronen. Bij nul magnetisch veld, resulteren de spin en pseudospin samen in

het SU(4) Kondo effect. Dit manifesteert zich in een meervoudige splitsing van
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de Kondo resonantie in een eindig magnetisch veld.

In Hoofdstuk 7 bestuderen we hoe het transport door een CNT in het open

QD regime verandert met supergeleidende contacten. We zijn in staat kleine

superstromen te meten door de NTs. Door middel van een gate electrode kunnen

we de energie niveaus van de NT QD variëren zodat ze AAN of UIT resonantie zijn

met de Fermi energie in de contacten. Dit resulteert in een transistor werking door

resonante tunneling van de superstroom door de nanobuisjes. Onze experimenten

bevestigen bestaande theoretische voorspellingen over hoe een superstroom door

een systeem met een discrete toestandsdichtheid, zoals een QD, stroomt.

Het laatste hoofdstuk van dit proefschrift is gewijd aan het elektrisch trans-

port door opgehangen CNT QDs. We meten een verzameling van abnormaal

lage excitatie energieën, die niet gëıdentificeerd kunnen worden als elektronische

excitaties en we stellen dat ze veroorzaakt worden door fonongerelateerde tun-

nel processen in de QD. De stroom-spanning karakteristieken geven aan dat de

elektron-fonon koppeling behoorlijk sterk is in opgehangen koolstof nanobuisjes.

Pablo Jarillo-Herrero

September 2005
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