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Abstract

Carbon nanotubes have attracted a great deal of attention during the past
fifteen years since their discovery. Their unique physical properties make them
promising candidates for a number of future applications, such as quantum com-
puting and molecular optoelectronic devices. A lot of the physics concerning
nanotubes however, like orbital and spin lifetimes, have this far remained elusive.
As theory predicts long orbital and spin lifetimes for nanotubes, experiments to
determine these quantities have attracted scientific interest.

Most of the schemes employed so far in other systems to measure such quan-
tities rely on the ability to control single electrons. This is typically done by
confining electrons in single or double quantum dots and then performing pulse
experiments. Based on the theoretical predictions mentioned above we expect
that the measurable current for carbon nanotube double dot systems could be
too small to measure through dc transport measurements. Single Electron Tran-
sistors, the most sensitive electrometers known presently, are however able to
measure even a single electron charge tunneling through the dot. They can
therefore be used to perform charge instead of transport measurements mea-
surements on carbon nanotube double quantum dots.

We report on the reproducible fabrication and characterization of Single
Electron Transistors (SETs) and Carbon Nanotube Double Quantum Dots with
narrow top gates. The Single Electron Transistors can couple electrostatically to
the double quantum dots to perform charge sensing. Charge detection however
is found to depend critically on the SET position and proximity to the nanotube
dots.
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Chapter 1

Introduction

This report is written in partial fulfilment of the requirements for the degree
of Master of Science from the Kavli Institute of Nanoscience at the Delft Univer-
sity of Technology. Relevant research was performed in the Quantum Transport
Group. The work was supervised by Ir. S. Sapmaz and was conducted in the
group of prof. dr. ir. L.P. Kouwenhoven.

1.1 Motivation for this work

The semiconductor industry has been driven in the past decades by Moore’s
law, which states that the computing capacity of a computer chip doubles
roughly every two years thus leading to a proportionate increase in speed and
decrease in feature size. This staggering prediction has held true till today, but
it is expected to break down in the coming decade. Clever engineering and
exotic materials do not seem to be enough to counterbalance the quantum me-
chanical effects that dominate structures with feature sizes comparable to the
electron’s Fermi wavelength. Richard Feynman, in his famous talk ”There is
plenty of room at the bottom”, was the first to envision an era of nanoscience
and in 1982 even showed that quantum mechanical systems could be used as
computational devices. A few years later David Deutsch described a univer-
sal quantum computing scheme while Peter Shore successfully solved a difficult
problem concerning factorization that was relevant to a quantum computer’s
operation.

These two combined developments have sparked an intense competition, with
roughly two main parts: The first involves the creation of a quantum computer
able to work with a large number of information bits, so called qubits; the second
involves the study of how small groups of molecules, or even single molecules,
conduct electricity. Molecular Electronics deals exactly with this issue: the
formulation of a theory for conduction that includes individual electron levels
of a single/few atom(s).

The research in this thesis is relevant to both: on one hand it involves single
molecules, such as carbon nanotubes (CNTs) (Fig. 1.1) and their energy levels;
on the other hand it deals with quantum phenomena arising at small length
scales and ultra-low temperatures and has potential applications for quantum
computing.
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CHAPTER 1. INTRODUCTION

Figure 1.1: An AFM image of a carbon nanotube grown on a silicon wafer. The
four metal markers at the corners are used for electron beam aligning.

1.2 Quantum Computation

If a classical bit is represented as either 0 or 1 a qubit can be represented by
|Φ〉 = α|0〉+β|1〉, a superposition of the two (classical) states in which α2 and β2

give the probability that a measurement returns the value |0〉 or |1〉 respectively.
For two qubits, we can have states |00〉, |01〉, |10〉 or |11〉 and the superposition
of these states would be represented by |Φ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉: an
operation acting on this superposition of states would act on 4 states. Scale
this up to N states and one ends up with operations acting on 2n states, and
exponential increase in operation power.

In principle, any two-level quantum system could operate as a quantum
computer. For carbon nanotube molecules, of particular relevance is the electron
spin. If electron spin is to be used then as a qubit it would be desirable that
these ”up” and ”down” states are relatively stable in time. This means that an
electron should be able to spend enough time in each state so that the operation
carried out is fully performed before a transition to another state occurs.

1.3 Carbon Nanotubes and Quantum Computa-
tion

Theoretical calculations for carbon nanotubes (cNTs) [1] predict very long
spin and orbital lifetimes. More specifically, most of natural carbon is with-
out nuclear spin. In addition, spin-orbit coupling is weak in nanotubes due
to carbon’s low atomic number. Some of the mechanisms responsible for spin
decoherence are therefore very weak in nanotubes. As a result, nanotubes are
considered ideal candidates for quantum computation based on spin. One of
the further goals of this project was to pinpoint more precisely how long these
lifetimes can be.
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1.4. CARBON NANOTUBE QUANTUM DOTS

Other than this, nanotubes are very interesting materials in virtue of their
mechanical properties: they are long, flexible and very strong molecules [2].
Due to their robustness and relatively large sizes for single molecules, which
can be of the order of many microns, they have therefore been proposed as
candidates for various molecular electronics devices: they have been used as
molecular wires [3], room temperature Field-Effect-Transistors (FETs) [4] and
as optoelectronic devices [5]. To this end, it is interesting by itself to study how
current flows through these molecule and try to extract useful characteristics
about the energy levels through which electrons move.

1.4 Carbon Nanotube Quantum Dots

To be able to distinguish electronic states within a nanotube one can form
quantum dots of them. These are short areas of the nanotube that are separated
from the rest of the tube by tunnel barriers. These barriers are usually formed by
applications of large voltages on narrow top gates, see Fig. 1.2. These voltages
spatially deplete electrons from the nanotube segment that lies beneath and
make it energetically more difficult for them to pass through: an electron is
essentially confined to the area between the tunnel barriers, this region being
called a Quantum Dot (QD). Given enough time and under proper conditions
(no Coulomb Blockade) electrons will eventually tunnel in/out of the dot and
provide a measurable current. A large tunneling rate provides larger measurable
current while smaller tunneling rates leads to smaller currents, with a present
bound on the smallest resolvable current being approximately 15 fA.

Figure 1.2: A carbon nanotube double quantum dot. The nanotube is covered on
opposite sides by Palladium source and drain electrodes. The middle top gates
deplete electrons on the tube below them, thus forming two isolated regions on
the tube, dot 1 and dot 2. Adapted from [6].
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Chapter 2

Carbon Nanotubes

In this chapter some of the relevant theory of carbon nanotubes is discussed.
Carbon nanotubes are extremely thin (diameters of ∼ 1 nm) and hollow macro-
molecular systems. They were first discovered in 1991 by Sumio Iijima and pro-
duced massively in single-wall form a few years later by techniques developed
by Richard Smalley. Their unusual physical and chemical properties quickly
captured the imagination of the scientific community. Depending on how they
are rolled up they can be made to be either metals or semiconductors, while
their large aspect ratios make them ideal one-dimensional systems.

2.1 Graphene Band Structure

A single wall carbon nanotube, see Fig. 1.1, can be thought of as a two-
dimensional graphene sheet rolled up to form a seamless, hollow cylinder. Graph-
ene is a sheet of carbon atoms where the carbon atoms are arranged in a 2D
hexagonal lattice. Now, every carbon atom has four electrons to share. Of
these, three electrons per atom are responsible for sp2 hybridized σ-bonds with
three neighboring atoms while the fourth electron occupies a pz orbital situated
vertically to the graphene sheet. These pz orbitals among neighboring carbon
atoms overlap to form weak π-bonds and it is these orbitals that are responsible
for electron conduction as electrons hop through different lattice atoms on a
nanotube.

The process of rolling up a graphene sheet to make CNTs can be mathe-
matically described by a so-called chiral vector. This chiral vector

−→
C can be

expressed on the basis unit vectors a1 and a2 of graphene as

−→
C = n−→a1 + m−→a2 (2.1)

with n, m integers. By joining different beginnings and ends for the chiral
vector one can get nanotubes with different properties. Depending on n and m
therefore three distinct geometries arise: armchair, zigzag or chiral nanotubes
(Figure 2.1) where the nanotube diameter is given by

d = C/π = (α/π)(
√

n2 + m2 + nm) (2.2)

where a = 0.245 nm and C being the circumference of the tube. The dispersion
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CHAPTER 2. CARBON NANOTUBES

Figure 2.1: a) The process of rolling up a graphene sheet. For different chiral
vectors C a variety of nanotubes with different properties occur. Nanotubes can
turn out as either armchair (b), zigzag (c) or chiral (d). Reproduced from [7].

relation for electrons in a graphene sheet can be calculated using a tight-binding
model to be

Egraphene = ±γ0[1 + 4cos(
√

3kyα/2)cos(kxα/2) + 4cos2(kxα/2)]1/2 (2.3)

where γ0 is the C-C overlap integral, or more simply the bond strength. The two
resulting bands, a bonding (valence) and an anti-bonding (conduction) one, are
the consequence of having two atoms per graphene unit cell. These two bands
cross at 6 points in reciprocal space which happen to coincide with the corners
of the first Brillouin zone, or stated differently, the energy at these six points
equals the fermi energy EF . Of these six so called ”K-points” only two are
inequivalent, meaning that one cannot reach all six K-points by starting from a
single one. Instead, some of the K-points are reachable by translations starting
from one K-point while the rest are only reachable from a different K-point. All
six points however can be reached starting from two different K-points. This is
a result of the two inequivalent atom sites in the graphene lattice unit cell.
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2.2. ELECTRONIC STRUCTURE AND PROPERTIES OF CNTS

2.2 Electronic Structure and Properties of CNTs

To go from the graphene band structure to that of a nanotube, we simply
impose periodic boundary conditions to the electron wave vector in the direction
of the circumference of the tube

−→
C ·

−→
k = πdk⊥ (2.4)

Now each band of graphene splits up into sets of one-dimensional subbands.
The allowed energy states for electrons in nanotubes are therefore represented
by cuts through the graphene bands. These cuts are spaced by ∆k⊥ = 2/d
so that for small diameter tubes (v1 nm) only a few wave vectors exist in the
circumferential direction.

Figure 2.2: Band structure of a 2-D graphene sheet. The two bands cross at six
so called K-points. Below (white) is the first Brillouin zone. For this particular
nanotube the cuts imposed by periodic conditions cross through the K-points.
This nanotube is therefore metallic. Reproduced from [8].

Depending on the integers n and m, see Eq. 2.4, it may happen that these
”cuts” imposed by the periodic conditions mentioned above pass through the
K-points. When that happens the tube is metallic (n = m): the usual graphene
conical bandstructure reduces to linear dispersion relations at kF with two
modes present at kF and -kF . One branch has a positive while the other has a
negative slope. These represent states for right and left movers respectively. If
however no cuts pass through a K-point the tube is considered semiconducting
(n - m 6= 3i), see Fig. 2.3. This means that an energy gap now opens up at the
Fermi energy. We are mostly interested in what happens at EF because it is
these electrons that are responsible for conduction.

Concerning phonons, vibrations of the rolled-up graphene lattice, a very
crude first approximation is that generally scattering between states is sup-
pressed. To scatter from states at one K-point to another K-point, a large
change in momentum of 2kF is required for an electron. An acoustical phonon
would then have to possess an energy of about 100 meV, much larger that kT
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CHAPTER 2. CARBON NANOTUBES

Figure 2.3: Slices (blue) through the graphene band structure. Only the vicinity
of one K-point is shown. Depending on the quantization conditions the allowed
values of k⊥ can pass exactly through the K-point (left) or not (right). In the
first case the nanotube is metallic whereas in the second case a gap opens up
between valence and conduction band and thus the tube semiconducts. Adapted
from [9].

even at room temperatures. This means in practice that phonon scattering is
rather suppressed in nanotubes.

Figure 2.4: Band structure and density of states for metallic and semiconducting
nanotubes. Van Hove singularities appear whenever an extra subband is taken
into account. Notice the bandgap at E=0 for semiconducting tubes.

Phonon modes however are abundant in carbon nanotubes [2]. There ex-
ist thus many different ways through which the rolled-up graphene lattice can
vibrate. In the bending mode for instance, where the tubes’ edges vibrate per-
pendicular to its axis, the phonon spectrum can be of the order of 0.1 - 10 µeV .
In the so-called Z-breathing mode, the tube vibrates parallel to its axis with
phonon energies of the order of 60 - 600 µeV . These two modes mentioned this
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2.2. ELECTRONIC STRUCTURE AND PROPERTIES OF CNTS

far are length dependent and operate at very small energy scales. The other
two modes, the squashing mode and radial breathing mode, lie in energy ranges
of 2 to 4 meV and 18 to 25 meV respectively [10]. These energy scales are then
more accessible experimentally.

Figure 2.5: Scattering possibilities between two different K-points for an electron
starting in position 1 in a metallic nanotube. Only transitions to state 2 are
possible through phonon emission. All other transitions are fundamentally not
allowed. Adapted from [11].
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Chapter 3

Quantum Dots

A quantum dot is a small box that can be filled with electrons (or holes).
The name ”dot” simply suggests an exceedingly small region in space. Quantum
mechanics then postulates that particles trapped in such a region can exhibit
discrete, particle-in-a-box types of states. These are zero dimensional energy
states on which extra electrons can be placed. Normally, even a quantum dot is
made out of roughly a million atoms with an equivalent number of electrons. For
semiconducting dots virtually all electrons are bound to the nuclei, but there is a
small number that are free. These electrons occupy aforementioned discrete 0-D
energy states. Since a quantum dot is a generic term for such systems, quantum
dots of many different sizes and materials exist: from Stranski-Krastanow self
assembled quantum dots to carbon nanotubes. The focus of this thesis is on the
latter.

3.1 Single Quantum Dots

All electron transfers on a quantum dot take place through tunneling events.
The quantum dot is usually tunnel coupled to two electrodes, the source and
drain, through which particle exchange with the reservoirs takes place. The dot
is also capacitatively coupled to a nearby gate electrode. There is no tunneling of
electrons from gate to dot: the gate is only there to act as an extra experimental
knob. By applying a voltage to it, the gate can affect the electrostatic potential
of the dot itself.

The properties of quantum dots are dominated by two effects. The first one
concerns the Coulomb repulsion between the electrons already on the dot. Any
electrons already on the dot cause field lines that make it energetically costly
for extra electrons to tunnel on to the dot. An extra electron changes the dot
electrostatic potential by EC = e2/C, where C is the total capacitance of the dot.
Due to this charging energy, tunneling of extra electrons can be dramatically
suppressed, particularly at low temperatures, since then electrons cannot gain
enough energy from thermal fluctuations alone to overcome the charging energy
and enter the dot. This phenomenon is called Coulomb Blockade.

The second effect concerns electrons on the dot: these are confined in all
three dimensions. This leads to the formation of a discrete energy spectrum for
electrons, much like the ones displayed by atoms. For these reason QDs are some
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CHAPTER 3. QUANTUM DOTS

Figure 3.1: A schematic representation of a quantum dot coupled capacitatively
to source, drain and a nearby gate. Particle exchange occurs only with the leads.

times referred to as artificial atoms. The ”particle-in-a-box” energy separation
for nanotubes is ∆E = hvF

2L [5]. The Fermi velocity is estimated theoretically
for nanotubes to be roughly vF = 106 ms−1 [5]. Therefore even a nanotube of
length L of a few µm will show a considerable energy splitting of the order of
meV. The advantage of working with quantum dots is precisely that one can
connect them to leads and perform electrical spectroscopy rather than optical,
as is usually the case for atoms.

For electrons to remain localized on one dot the tunnel barriers have to
be sufficiently opaque and the temperature lower than the charging energy as
mentioned above. Summing it up

Rt >> h/e2 (3.1)

e2/C >> kT (3.2)

The first criterion can be met by weakly coupling the dot to source and drain
while the second by making the dot smaller or lowering the temperature.

For a more mathematical description of QDs the Constant Interaction Model
(CI) is usually used. Here one compacts all coulomb interactions of electrons in
the dot, and those in the environment by a single, constant capacitance C which
is the sum of capacitances between the dot and source, CS , the drain, CD, and
gate CG. One also assumes that the single particle energy level spectrum is
independent of the number of electrons on the dot. Under these assumptions
the total energy U(N) of a dot with N electrons in it and VS , VD, VG the
respective voltages on source, drain and gate can be written as:

U(N) =
[−|e|(N −N0) + CSVS + CDVD + CGVG]2

2C
+

N∑
n=0

En(B) (3.3)

with N0 the electron charge compensating for positive background charge from
the nuclei. The terms CS , VS CDVD and CGVG can be changed continuously.
One can think of CGVG as the potential the dot would in some sense ”like” to
have while the last term is a sum over single particle energy levels.

The lowest energy required to add/extract the Nth particle (electron) from
a system (dot) is by definition the electrochemical potential µ(N), defined as

µ(N) ≡ U(N)− U(N − 1) = (N −N0 −
1
2
)EC − EC

e
(CSVSD + CGVG) + EN

(3.4)
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3.1. SINGLE QUANTUM DOTS

The first part is the electrostatic energy that has to be paid, while the
second part is the chemical contribution that corresponds to putting the particle
in a particular state. The electrochemical potentials of transitions between
successive ground states are spaced by

Eadd(N) = µ(N + 1)− µ(N) = EC + ∆E (3.5)

This also consists of an electrostatic first part plus the spacing between two
adjacent discrete quantum levels ∆E.

For small source-drain voltages, the so called low bias regime, electron trans-
port from source to drain is only possible through the dot if a level corresponding
to a transition between successive ground states is situated inside the transport
window. If not, the dot is said to be in Coulomb Blockade. To move an elec-
trochemical potential into the bias window one typically uses the gate. By
application of voltages one shifts the whole ladder of electrochemical potentials
up or down, and can thus bring one level inside the transport window. Elec-
trons can then tunnel sequentially, first from source to dot, as they enter the
dot makes a transition from the (N-1) to the (N) electron state, and finally off
to drain, see Fig. 3.2.

Figure 3.2: Electrochemical potential landscape. Top left: No level is in the
transport window (Coulomb Blockade). Top right: by means of the gate one
level is brought in the transport window and current flows. Bottom: Current
as a function of sweeping the gate voltage. Current peak heights depend on the
number of electrons that tunneled during the measurement time and therefore
on the tunneling rates to source (ΓL) and drain (ΓR). The peak lineshape can
be fitted by a Lorentzian. As temperature increases the peaks get thermally
broadened.

The second way to lift Coulomb blockade and bring a level in the transport
window is by changing VSD. When VSD is increased so much that also a

17



CHAPTER 3. QUANTUM DOTS

transition between ground and excited states comes in the bias window electrons
through the dot have two paths for tunneling, see Fig. 3.3. This will generally
affect the current, the change depending on the tunnel coupling of the two levels
involved in these two transitions.

Figure 3.3: Schematic of electrochemical potential landscape in the high-bias
regime. The source-drain voltage ∆E is large enough to allow electron transport
through two different ways, one of which involves the dot making a transition
to an excited state (red).

Finally, by sweeping both gate and source-drain voltage and measuring the
dot current one ends up with diagrams where the Coulomb blockade regions
appear as diamonds in the VSD-VG plane. These are the so called Coulomb
Diamonds, see Fig. 3.4. Where a line for a transition involving one excited
state touches the diamond region the bias window exactly equals the energy
level spacing. A rule of thumb for the position of the dI/dVSD is that if a line
terminates at the N- electron Coulomb blockade region, the transition necessarily
involves an N-electron excited state.

Figure 3.4: Coulomb diamonds diagram for a carbon nanotube. Inside the
diamonds no current flows - Coulomb Blockade. The four-fold symmetry denotes
the high quality of the nanotube. Reproduced from [12].

3.2 Double Quantum Dots

The next step after single dots is to study systems of more than one dot.
Whereas single dots are often described as artificial atoms, coupled quantum
dots in series (or double dots) can be thought of as artificial molecules. Depend-
ing on the interdot coupling capacitance, the two dots can form ionic-like (weak
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3.2. DOUBLE QUANTUM DOTS

tunnel coupling) or covalent-like (strong tunnel coupling) bonds. Most of the
physics behind single dots, like charging and confinement effects are also present
here. The mathematical formulation is however slightly different to account for
the existence of two dots. Note that the two dots are now coupled: a change
in the energy of one dot, for instance through a tunneling event, will affect the
energy of the other.

We follow the work of van der Wiel et al [13]. At first we treat the quantum
dot fully classically. The double quantum dot system can be modeled as a
network of resistors and capacitors, see Fig. 3.5. The two quantum dots are

N N1 2

V V

Vsd

g1

g1 g2

g2

C C

R C, R C, R C,L m RL m R

Figure 3.5: A double quantum dot modeled as a network of resistors and ca-
pacitances. The dots are represented by the two circles with N1(2) electrons on
dot 1(2). The dots are coupled to the leads by a resistor RL(R) and a capaci-
tor CL(R) and to each other by a resistor Rm and a capacitor Cm. Two gate
voltages Vg1(2) are coupled to the dots through capacitances Cg1(2).

represented by the two circles with N1(2) electrons on dot 1(2). Dot 1(2) is
coupled to the source (drain) through a capacitance CL(R) and a resistor RL(R)

in parallel. The tunnel coupling between the dot is represented by a capacitance
Cm and a resistor Rm. Two gate voltages Vg1(2) are coupled to the dots through
capacitances Cg1(2).

U(N1, N2) =
1
2
N2

1 EC1 +
1
2
N2

2 EC2 + N1N2ECm + f(Vg1, Vg2) (3.6)

f(Vg1, Vg2) =
1
e
{Cg1Vg1(N1EC1 +N2ECm)+Cg2Vg2(N1ECm +N2EC2)} (3.7)

where EC1(2) is the charging energy of the single dot 1(2) and ECm is the
electrostatic coupling energy. The coupling energy ECm is the change in energy
on one dot when an electron is added to the other dot. These energies can be
expressed in terms of capacitances in the network as

EC1 =
e2

C1

(
1

1− C2
m

C1C2

)

EC2 =
e2

C2

(
1

1− C2
m

C1C2

)

ECm =
e2

Cm

(
1

C1C2
C2

m
− 1

)
(3.8)
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CHAPTER 3. QUANTUM DOTS

The electrochemical potential µ1(2)(N1, N2) dot 1(2) is by definition the energy
needed to add the N1(2)-th electron to dot 1(2), when having N2(1) electrons on
dot 2(1). From Eq. 3.6 the electrochemical potentials of the two dots follow as

µ1,class(N1, N2) = U(N1, N2)− U(N1 − 1, N2) (3.9)

= (N1 −
1
2
)EC1 + N2ECm +

1
e
(Cg1Vg1EC1 + Cg2Vg2ECm

+CLVLEC1 + CRVRECm)
µ2,class(N1, N2) = U(N1, N2)− U(N1, N2 − 1) (3.10)

= (N2 −
1
2
)EC2 + N1ECm +

1
e
(Cg2Vg2EC2 + Cg1Vg1ECm

+CRVREC2 + CLVLECm)

Up to now there has been no mentioning of the discreteness of the energy
levels in each dot due to confinement of charge carriers. When this discreteness
is taken into account, the energy of these states must be added to the electro-
chemical potential above. The energy to add an electron to the energy level N
to dot 1(2) is denoted by En,1(2) and the electrochemical potential for dot 1(2)
can be rewritten as

µ1(N1, N2) = µ1,class + En,1 (3.11)
µ2(N1, N2) = µ2,class + En,2

The change in µ1(N1,N2), if at fixed gate voltages N1 is changed by one,
µ1(N1+1,N2) - µ1(N1,N2) = EC+ ∆E is called the addition energy of dot (1).
The reasoning for dot (2) is exactly the same.

3.2.1 Stability diagram for the linear regime

As in the single dot case, the linear regime occurs when the bias voltage
is infinitesimally small. From the formulas given in Eq. 3.11 a charge stability
diagram can be constructed giving the equilibrium numbers of electrons on dot
1(2) as a function of the gate voltages Vg1 and Vg2. We define the electrochemical
potentials of the source and the lead to be zero if no bias voltage is applied,
µL=µR=0. The equilibrium charges on the dots are then the largest integer
numbers for which µ1(N1, N2) and µ2(N1, N2) are both less than zero. If either
one is larger than zero electrons can escape through that leads but if either one
is less than zero, electrons can tunnel from the leads into the dots and these
states become filled. This constraint, as well as the fact that N1 and N2 must
be integers, produce hexagonal stability diagrams. These are the double dot
analogs of the single dot Coulomb diamonds diagrams, see Fig. 3.6(a).

A current is measured when an electron can tunnel through the double dot.
An electron can tunnel through the dot in two ways. At the points denoted
by an (•) in Fig. 3.6(a) electrons tunnel through the states (N1, N2), (N1 +
1, N2) and (N1, N2 + 1). This cycle is known as the electron cycle. Note that
three states must align. This happens at the intersection of three lines in the
stability diagram. This tunnelling process is schematically shown in Fig. 3.6(b)
as the round arrow around the (•). At the point denoted by a (◦) the electron
tunnels through the states (N1, N2), (N1, N2 − 1) and (N1 − 1, N2). This can
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Figure 3.6: Stability diagram for a double dot in the intermediate coupling
regime. The stability regions as a function of Vg1 and Vg2 are given in (a).
Transport through a double dot at the triple points is drawn in (b). At the
(•) triple point, transport through the double dot happens through the states
(N1, N2) (N1 + 1, N2) (N1, N2 + 1). This denotes an electron tunneling to the
right through the double dot system and is represented by the round arrow
around this triple point. At the (◦) triple point, transport happens through the
states (N1, N2) (N1, N2−1) (N1−1, N2), so effectively a hole moves through the
dot in the opposite direction of the applied bias. Note that to have transport in
both of these cases on needs to go around the triple points. The configuration
of the levels in the double dot is given for several points here. The number of
electrons in the left and right dot is given by (N1, N2) and values for some of
the electrochemical potential are given.
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Figure 3.7: Schematic stability diagram showing the honeycomb pattern and
respresentative Coulomb peak spacings.

be interpreted as the sequential tunneling of a hole in the direction opposite to
the electron. This cycle is illustrated as the round arrow around the (◦).

The gate capacitances of the system can be directly related to the dimensions
of the honeycomb cells through

∆Vg1(2) =
e

Cg1(2)
+ ∆E (3.12)

Finally, from the relation Eq. 3.13 the capacitative coupling Cm between the
two dots can be calculated through

∆V m
g1(2) = ∆Vg1(2)

Cm

C1(2)
(3.13)

3.2.2 Large bias regime

If the bias is increased further, two things happen. First, the chemical po-
tentials of the left and right dot are affected because the voltages on the left and
right dot are coupled to the chemical potentials as given in Eq. 3.9. Secondly,
the conductance regions change from triple points in the linear regime to trian-
gular shaped regions in this large bias regime (see Fig. 3.8). The dimensions of
the triangles δVg1 and δVg2 are related to the applied voltage as

α1(2)δVg1(2) =
Cg1(2)

C1,(2)
eδVg1(2) = |eV | (3.14)

where α1 and α2 are voltage-to-energy conversion factors. Note that resonant
transport occurs only through the base of the triangle where ground states for
the two dots are aligned. However, inelastic tunneling and co-tunneling can
contribute to a finite current inside and outside the triangles.
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3.2. DOUBLE QUANTUM DOTS

Figure 3.8: Large bias triangles for a double quantum dot. Current is possible in
the area inside the triangle. The conditions µL = −|e|V ≥ µ1, µ1 ≥ µ2 and µ2 ≥
µR = 0 determine the boundary of these large bias triangles. The configuration
of the levels in the dot is given for several points in this diagram. The number
of electrons in the left and right dot is given by (N1, N2). Configurations for
some electrochemical potentials are also given for some positions.

3.2.3 Excited states

For even larger bias it happens that, like in single dots, excited states can also
contribute to transport through the double dot system. The transport window is
now large enough to accommodate more than a few transition probabilities, and
some of them can involve excited states of the left and/or right dot. Electrons
can now tunnel in and out through these states and therefore more channels for
tunneling exist. This will lead to a change in current.

To understand how excited states fit in the triangle picture described this
far it is instructive to refer to the toy example of Fig. 3.9, adapted from Wouter
Naber [14]. For simplicity we only consider one excited state (ES) in the left
and one in the right dot. We also assume the excited state of the right dot
lies closer to the right dot ground state (GS) than the left dot’s ES does to its
respective GS. These excited states can be due to phonons or spin for instance.
In the lower left corner of the triangle both GSs are aligned and in resonance
with the right lead. If one moves over the basis of the triangle, from left to right,
the GSs remain aligned but shift equally down in energy. Thus, at the bottom
right corner of the triangle the ground states are still aligned but now are in
resonance with the left lead chemical potential. This is why throughout the
basis of the triangle a strong current is observed which corresponds to ground
state transport as mentioned earlier.At some point while moving through the
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basis of the triangle the excited states come in the transport window. Only the
onset of the right dot ES signifies a change in current (green part in Fig 3.9)
since an electron now has two ways to transverse the dot. The left excited state
always lies higher than the right dot’s GS and ES and is therefore inaccessible.

Figure 3.9: Schematic of several areas inside a large bias triangle for negative
bias and one excited state in every dot. Different colors denote change in current.
The relative positions of electrochemical potentials in the left and right dot are
also given for some places. Adapted from [14].

This argumentation holds for any line parallel to the base of the triangle.
Therefore, there exists a line parallel to the left side of the triangle for which
the current increases if we move from the left to the right side. If one starts
from the bottom left corner but moves over the left side of the triangle the right
dot ground state is kept aligned with the left lead and the states in the left dot
moves down. At some point the left dot ES enters the bias window. At this
point the left dot ground state is aligned with the right dot excited state and
so the current is resonant. For this reason the current increases again (onset
of yellow region). When we cross this point, an electron in the right dot now
has two possibilities to tunnel into the left dot. A similar argumentation can
be given for any line starting from the basis of the triangle parallel to the left
side of the triangle. If the bias becomes even larger the two triangles start to
overlap. For one ES in the left and one in the right dot, a schematic diagram is
given in Fig. 3.10(a).

If one plots a current lineshape trace inside a triangle as a function of the
energy separation ε of the left dot GS and the right dot GS, then at ε = 0
the two GSs are aligned and transport is resonant. The electron entering the
right dot only carries information about the lorentzian broadening of the left
dot’s level and has lost all information on the Fermi-Dirac thermal broadening
of the reservoirs where it originated from. Effectively, the first dot acts as a
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low-temperature pass filter for the second dot. Hence, for resonant tunneling,
the lineshape obtained is a lorentzian given by [13] as

I(∆E) = e
Γ3|t12|2

(∆E/h)2 + Γ2
3
4 + |t12|2(2 + Γ3

Γ1 )
(3.15)

where Γ1,3 are the tunneling rates through the left and right leads respectively,
∆E the difference in energy between two discrete energy levels in the two dots
and |t12| is the tunnel rate between them. In this way one can measure the in-
trinsic lifetime of states in the two dots without interference of thermal broad-
ening from the reservoirs.

(a) (b)

Figure 3.10: a) Schematic stability diagram for very large bias. The black lines
correspond to transport through different combinations of ground and excited
states between the two dots. The red line corresponds to a cut through the
triangle where the current lineshape is measured (see Fig. 3.10(b)). Adapted
from [13]. b) Current lineshape close to ε = 0. Data points are fitted to a
Lorenzian. Reproduced from [15].

Any coupled quantum dot can be approximately modeled as a two-level sys-
tem. Here only one level in each dot is of significance, as for instance two
ground states. Transport through the system can then occur in two ways: when
the GSs are aligned (resonant tunneling) the current is elastic as no energy is
dissipated. When the two levels are misaligned there has to be some sort of
medium that offers/receives the energy mismatch between the electrochemical
potentials of the two dots. This medium could be for example photons (Pho-
ton Assisted Tunneling) or phonons. In large bias triangles like the ones in
Fig. 3.10(a) the elastic current peaks at ε = 0 at the base of the triangle where
the ground states are aligned, while finite current inside the triangles belongs
to inelastic tunneling events. Theory predicts [16] that inelastic tunneling for a
two level system such as a double dot coupled to a bosonic environment has a
|t12|2 dependency. Excited states spectroscopy can therefore also be performed
by tuning the middle barrier between two coupled dots to higher values.
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Chapter 4

Single Electron Transistors

A single-electron transistor (SET) is a three terminal device. It consists
of a metallic island that is tunnel-coupled to source and drain electrodes, and
capacitatively coupled to a nearby gate that tunes it’s electrostatic potential.
SETs have been shown to function as ultra sensitive electrometers, being able to
sense even fractions of an electron charge. It can therefore be used when current
transport measurements become too difficult, as for instance if the current is
too small to measure. One then typically exchanges current measurement for
charge measurement. It is this characteristic of an SET that makes it an ideal
candidate, along with quantum point contacts (QPCs) for measuring charge
transport through nanotube quantum dots.

4.1 SET Fabrication

Single Electron Transistors are usually fabricated using the so-called double-
angle (or shadow) evaporation technique. One starts with an SET pattern

Figure 4.1: Fabrication of an SET using the standard double angle evaporation
technique. The sample is first evaporated under one angle (dark), then oxidized,
and finally evaporated under the opposite angle (light). A tunnel barrier is
formed at the overlap area. Notice the bridge structure formed by the PMMA.
Without it the two layers would overlap everywhere and no small tunnel junction
would be possible. In this image only the evaporation under one of the SET
bridges is visible. Adapted from [17].

already written and developed on the resist. The first step involves a metal
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evaporation under an angle from the vertical. This angled evaporation results
in a shifted pattern on the Si wafer. In order for this shift to take place, a
sufficient resist undercut should exist. In the second step, the surface of the
first metallic layer evaporated previously is oxidized. In our case, where Al is
the metal of choice, this will result in a thin Al2O3 layer being formed. Finally,
the sample is re-evaporated under an angle opposite to the one used in the first
step so that the pattern is now shifted in the opposite direction.

With a proper choice of evaporation angles in the first and third steps one
can achieve a very small overlap area between the two metal layers, see Fig. 4.1.
At this small area, the tunnel junction, a metal-insulator-metal interface is
formed. Effectively, electrons have to tunnel through the oxide to move from

Figure 4.2: SEM image of the SET design used in this work. The island is
capacitatively coupled to a nearby gate and connected through tunnel barriers
to source and drain. Compare to Fig. 4.1.

one metal layer to the other. Aluminum is usually the metal of choice for in this
case since the oxide it forms grows very uniformly, without creating structural
defects that could function as pinholes through which electrons would be able
to move through the oxide layer.

The junction overlap is what sets the capacitance C of the junction. The
charging energy E = e2

2C is in turn set by the overlap area. Finally, the resistance
R of the junction is set by the oxidation time, this dependence not generally
being a linear one [17]. The tunnel junction area is set by a combination of
factors: evaporation angle, resist bridge thickness and resist height. For larger
angles the junction overlap becomes larger. If the bridge width is for example
too large, larger evaporation angles are also needed to achieve overlap. Finally,
a larger resist thicknesses require smaller evaporation angles to achieve the same
overlap as with smaller resist thicknesses.

4.2 SET Characteristics

As mentioned above the SET is a three terminal device where a metallic
island is connected through tunnel barriers to source and drain electrodes and
coupled capacitatively to a nearby gate. An SET therefore resembles a Field
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- Effect Transistor (FET) is the sense that both are three-terminal devices.
However, the FET channel is replaced in the SET by the metallic island and
the tunnel barriers. This is a crucial difference as in SETs electrons tunnel in
a correlated manner (sequentially) and do not move in unison as is the case for
FETs.

The description above is very much reminiscent of a quantum dot, as dis-
cussed in chapter 3.1. The difference is that for SETs the island is always
metallic while for QDs it can also be semiconducting. In this respect the char-
acteristics of an SET very much resemble those of a quantum dot: the familiar
coulomb peaks when sweeping the gate voltage and the Coulomb diamonds in
the VSD - VG plane are also present.

Figure 4.3: Conductance of an SET as a function of gate voltage. The familiar
coulomb peaks are visible. Low to high corresponds to higher bias voltages. Note
that the peaks are now equally spaced. The grey area corresponds to switching:
some defect in the vicinity of the SET electrostatically de-tunes the effective
voltage from the gate and thus the SET current also changes. Reproduced from
[18].

Since the energy level spacing δ is much smaller in SETs due to the large
island size it makes little sense to talk about zero-dimensional states here. The
Coulomb diamond diagram is therefore modified as shown below when sweeping
also Vg: Inside the black areas Coulomb Blockade dominates and the electron
number in the island stays fixed. Just above and below the blockaded regions
the electron number can change by one. This is where single electron tunneling
can take place. If one moves even further away from VSD = 0 the electron
number can change by two: tunneling can occur twice.

The slopes of the diamonds provide information on the left and right tunnel
barrier capacitances. Unequal tunnel capacitances will yield skewed coulomb
diamonds. The left diamond slope is equal to -CG/CL while the right diamond
slope is given as CG/(CR + CG). The diamond skewness is proportional to
the difference (CL-CR). Since the capacitance of each junction is defined in
our case by the overlap area A formed between two consecutive angled metal
evaporations, the so called double angle evaporation technique [see section 4.1],
one can extract information about the quality of evaporation and the bridge
resist profile. A difference in left and right tunnel resistances generally results
in skewed Coulomb diamonds. However, a difference in resistance between the
two tunnel junctions will result in skewed Coulomb peaks.
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Figure 4.4: Differential conductance calculated for an SET as a function of
the gate voltage and the bias voltage. The charge states at low kT are noted.
Reproduced from [19].

4.3 SETs as Charge Detectors

It becomes evident from Fig. 4.3 that the voltage or equally the charge on
the SET gate controls in a very sensitive way the source-drain current. This
concept lies at the heart of the idea of using an SET as a very sensitive charge
electrometer: a small change in the charge of the gate can affect the measured
conductance.

Since the SET is in reality not only coupled to its own gate but to the whole
environment, a nearby quantum dot also electrostatically affects the island so
that it can be thought of as an effective second gate. When a single electron
tunnels in or out of the dot the dot’s potential changes. This will in turn affect
the SET by shifting the whole Vg,SET by αδVg,dot, where α denotes the coupling
of the dot to the SET and δVdot is the change in the dot potential due to the
tunneling event. If for instance the SET is normally biased at some Vg0,SET

value corresponding to a Coulomb valley, the new voltage Vg0,SET +αδVdot bi-
asing the SET could be shifted enough to produce a Coulomb peak. This is
the concept underlying the usage of the macroscopic SET for charge sensing on
structures much smaller than the SET itself, such as a quantum dot, and for
charges too small to measure, such as a single electron. This charge sensitivity
has been shown to be as high as 10−5e/

√
Hz, very close to the theoretical limit

of 10−6e/
√

Hz [20]. This means that one could detect a charge variation of
10−5 electrons in a one-second measurement, and the sensitivity increases with
the square root of the measurement time.

In practice it is convenient to bias the SET so that its conductance G cor-
responds to halfway up a Coulomb peak. There, the SET conductance slope is
the highest and therefore even a small change in Vg,SET affects the conductance
significantly. However, to induce tunneling events on the quantum dot in the
first place the dot’s plunger gate also needs to be varied. Since this is also cou-
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Figure 4.5: SET conductance measured as a function of one of the side gate
voltages of a double dot configuration. Large period oscillations correspond
to charging of the SET island. Small superimposed oscillations correspond to
charge transfer in the double dot system. Note that the conductance changes
the most halfway up the Coulomb peak. The SET plunger gate is on ground.
Reproduced from [18].

pled to the SET, a voltage on the dot plunger gate will de-tune the SET from
the voltage setpoint mentioned above. To compensate, one applies a voltage

Vg,SET = Vg0,SET − αVplunger,dot (4.1)

Then, the charge induced by the dot plunger gate is compensated by the SET
side gate: the SET now only senses the remaining part of the dot voltage, Vdot.
This is depicted in Fig. 4.6.

The SET voltage consists of two contributions. The first is a linear part
due to the linear increase of voltage of the Carbon Nanotube side gates that is
required to induce tunneling events. The second contribution comes from to the

Figure 4.6: Induced charge on the SET island by sweeping the nanotube side
gate. The blue trace corresponds to a linear increase in island voltage due to
the linear increase of the nanotube side gate. Dot tunneling events, marked out
with dashed lines, produce changes in the dot’s voltage in a sawtooth like man-
ner. This second contribution is superimposed (grey) on linear term mentioned
above. Through compensation the linear term can be canceled out. Adapted
from [21].
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sudden change of the dot potential when tunneling events take place (dashed
lines)which has a sawtooth character. In compensation the linear increase in
the voltage sensed by the SET due to the dot side gates (blue in Fig. 4.6)
is effectively canceled out and only the sawtooth contribution from tunneling
events remains.

By comparing Fig. 4.1 and Fig. 4.5 it is easy to see that background charge
noise in the vicinity of the SET gives a signal similar to that of an electron trans-
fer in a close-by quantum dot. These two signals can be confusing, producing
an SET conductance trace where it is difficult to interpret what event causes
the changes in conductance. To circumvent this problem a second SET can be
fabricated in the vicinity of the first. By correlating the signal coming from the
first to the signal coming from the second SET it is possible to more accurately
determine which processes belong to the dot and which belong to electrostatic
background noise. Particularly for double quantum dot architectures where one
electron exits the left dot and enters the right, the first SET is coupled more to
the left dot (and thus mainly senses the ”exit” event in the left dot) while the
second SET is coupled more to the right dot (and thus mainly senses the ”en-
trance” event in the right dot). By correlating the two signals any background
noise could be filtered out.
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Chapter 5

Fabrication

The fabrication time to make a working carbon nanotube quantum dot sam-
ple is about two weeks. During this time there is a great number of steps
involved in the process and this makes the fabrication line quite detailed. The
more complicated the structure gets, for instance by making double dots or fab-
ricating SETs, the more difficult fabrication becomes. Since the majority of the
project was spent inside the cleanroom fabricating samples, it is worthwhile to
give a detailed description of the fabrication process as well as some examples of
problems commonly encountered. All fabrication was done in the Delft Institute
for Microelectronics and Submicron Technology (DIMES).

5.1 Fabrication of Carbon Nanotubes

One typically starts out with an ordinary silicon wafer 19x19 mm wide. The
bottom side of the wafer is heavily doped and can act as a supplementary back
gate while the top wafer part is oxidized to insulate the structures on the surface
from the back gate.

Figure 5.1: Schematic of the fabrication cycle: a) the resist (light blue) is spinned
on the wafer (grey) and exposed to electrons, b) exposed part is removed dur-
ing development, (c) metal (yellow) is evaporated on the entire wafer, and d)
unwanted metal is lifted off through an acetone bath. Adapted from [14].

After an initial procedure of cleaning the wafer in a series of baths through
acetone, fumic nitric acid, water and isopropylique alcohol (IPA), the first two
levels of resist are spinned. In our case the PMMAs used in all fabrication steps
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where PMMA 350K 3% in chlorobenzene while the second layer is PMMA 950K
2% in chlorobenzene. The two resist thicknesses are chosen for most devices to
be exactly 150 and 100 nm respectively. The top resist layer is most sensitive
to electron irradiation and therefore functions as a mask for the bottom layer
and in parallel helps achieve a good undercut of approximately 60 nm from each
side.

After the resist is spinned and baked, the pattern to be written is designed
with the help of DesignCAD and exported through CATS. The wafer is then
exposed to electrons inside a Leica EBPG 5K Plus, see Fig. 5.1a, where the pat-
tern is written. Afterwards the wafer is developed for 2.5 minutes in MIBK:IPA
(1:3) and 1 minute in IPA. The development process removes the exposed part
of the resist so the end result is a wafer with certain parts covered by 250 nm
of resist while others are completely stripped of it, see Fig. 5.1b. Metal is then
evaporated on the whole wafer under UHV conditions, Fig. 5.1c. The last step
is lift-off: the metal-covered wafer is placed in warm acetone for as much time
as required to remove the remaining resist and metal from unwanted locations,
see Fig. 5.1d.

The procedure described above is repeated in four cycles for every sample
we make. The first cycle involves the fabrication of 75 nm high Pt markers with
a bottom Ti layer of 2 nm to achieve good adhesion to the SiO2. Some of the
markers serve as optical markers, guiding the eye, other serve as AFM markers
(for locating nanotubes later), while the rest are EBPG markers that help the
EBPG align the sample prior to writing on it.

The second cycle involves depositing a catalyst solution onto the wafer in
predefined positions. Using a Chemical Vapor Deposition method carbon nan-
otubes grow randomly from these positions. The catalyst is made out of 40 mg
of (Fe(NO)3)39H2O, 2 mg MoO2(acac)2(Sigma Aldrich) and 30 mg of Alumina
nanoparticles (Degussa Aluminum Oxide C) mixed in 30 ml of methanol and
sonicated for 1 hour. After covering the entire wafer with catalyst the sample
is placed in a furnace for 5 minutes at a temperature of 150 oC. To allow cat-
alyst only at predefined positions liftoff then takes place. Finally, the wafer is
placed in a quartz tube, heated to 900 oC and a series of combinations of argon,
methane and hydrogen flows are passed over the wafer.

Figure 5.2: Schematic of a silicon wafer with catalyst particles at predefined
position. Nanotubes grow out of the catalyst particles randomly.

In the third cycle Atomic Force Microscopy is used (see Fig. 1.1) to locate
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the nanotubes on the sample based on their position relative to the predefined
AFM markers from step 1. A few of them are chosen and Pd contacts are
evaporated on them. The Pd contacts act as source and drain electrodes that
can pass current through the tube. Palladium is the chose here because of the
very good contact it makes to semiconducting nanotubes, such that Schottky
barriers are avoided at the interface of Pd and nanotube. After the Pd contacts
are written and evaporated, probe stationing at room temperature takes place.
Those nanotubes that show the lowest resistances, of the order of a tens of kΩ,
are chosen.

Figure 5.3: Schematic of a silicon wafer with catalyst particles at predefined
position. A few nanotubes are chosen and contacted by Palladium source and
drain electrodes for electrical measurements.

In the fourth and last cycle the narrow top and plunger gates are written on
the two resist layers mentioned above and later evaporated with Aluminum. The
nanotube quantum dot narrow top gates in our samples have a width of about
30 nm and are spaced by approximately 400 nm, thus forming two coupled dots
of equal size. The end result looks similar to Fig. 1.2. A point to note is that
the SET structures are also written in the fourth cycle, together with the top
gates and aluminum contacts. Because this requires a double angle evaporation,
as mentioned in the previous chapter, the top gates and SET structures need
to be perfectly aligned. Otherwise the two directions of evaporation will cause
an unwanted broadening and shifting of the dot’s top gate structure or it can
happen that the structure will not be at all on the substrate. After a series of
tests we determined that the optimum evaporation angles for 150 nm of PMMA
350K 3% in chlorobenzene and 100 nm MMA 950K 2% in chlorobenzene were
±15o with an oxidation time of 10 minutes at 100µbar inside the loadlock. These
values yield junction overlaps of about 60 nm reproducible over a wide range of
samples.

5.2 Carbon Nanotube Fabrication Issues

The most common problem concerning nanotube fabrication involves pri-
marily problems with liftoff of the catalyst. If liftoff is not successful catalyst
particles are scattered everywhere on the wafer and not only in predefined po-
sitions, see Fig. 5.4(a). This means that in the next step, the CVD growth,
nanotubes will be intertwined on the whole wafer. In principle a different liftoff
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procedure, accompanied by sonication can be carried out. However there is
a risk that sonication will remove all catalyst from the wafer, even from the
predefined positions.

(a) (b)

Figure 5.4: Left: SEM image of the AFM markers on our wafer and catalyst
particles. Note that catalyst particles are scattered everywhere and not only in
predefined positions. Right: Intertwined nanotubes on a silicon wafer. None of
these nanotubes can be singled out to perform electrical measurements as all of
them are shorted.

Another common problem involves the stoichiometry and quality of the cat-
alyst itself. Even with optimum stoichiometry of its different components it
can happen that the catalyst particles give too much or too few nanotubes,
see Fig. 5.4(b). The amount of nanotubes growing out of the catalyst particles
depends critically on the amount of (Fe(NO)3)3 used during catalyst prepa-
ration. For our purposes it is best to have only few tubes growing out of the
catalyst particles. Otherwise all the tubes are shorted and individual ones are
unaccessible.

5.3 SET Fabrication Issues

The SET is the most difficult part of the fabrication line. A series of problems
can affect its performance. The most serious problems have to do with bridge
formation, see Fig. 5.5(a) and liftoff. The most crucial ingredient for forming
the bridges is the resist thickness: we found that a deviation of ± 10 nm away
from the desired total resist thickness of 250 nm results in no bridge formation.
Typically these 10 nm difference occur in the second PMMA layer. Concerning
the bridge size we have found that not all combinations of bridge widths and
lengths will work. After a series of tests the optimum bridge length and width
were determined to be 100 and 75 nm respectively. These yield tunnel junctions
with an area of approximately 60 nm. For these values we accomplished SET
reproducibilities in our final SET test structures of more than 90%. Note that
for a single operational SET two bridges have to be formed. This requirement
makes fabrication even more difficult. The reason for the collapse of the bridges
is for the bigger part the overexposure from the electron beam that creates a
very big undercut under the bridges, see Fig. 5.6, resist non-uniformity and to

36



5.4. SET AND DOUBLE DOT FABRICATION ISSUES

(a) (b)

Figure 5.5: Left: AFM image of the PMMA profile of an SET test structure.
The bridge structures are absent on both sides. One can barely detect the
positions where the bridges should be (black circles) through local anomalies in
the resist profile. Right: AFM image of the PMMA profile of an SET showing
the short between gate and source.

Figure 5.6: SEM image of a test SET structure. Note the fragility of the bridges
in the picture. A solution would be to make the bridges wider but this would
in turn require a much larger evaporation angle to achieve junction overlap and
this can give liftoff problems later.

a lesser part perhaps due to poor handling of the wafer. Concerning the later,
we have found that in certain cases the gate of the SET could be shorted to
either of the source/drain electrodes, see Fig. 5.5(b). This can occur during the
metal liftoff process. It can also occur before any metal is evaporated, as shown
in Fig. 5.5. For this reason the gate was moved further away from the island.
This resulted in a smaller coupling of our gate to the SET island.

5.4 SET and Double Dot Fabrication Issues

Except for the single nanotubes and SETs, fabrication of double dots either
by themselves or together with SETs can also give rise to problems. The most
common ones concern either a shifted pattern of gates, for instance top gates
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(a) (b)

Figure 5.7: Left: SEM image of a double carbon nanotube system. The gate
pattern is so shifted that no dots can be defined. Notice that the SET junctions
are also absent, resulting in a short. Right: SEM image of a different carbon
nanotube system. Although the gates and SET are properly fabricated, the
nanotube has unexpectedly snapped during the fabrication process.

that are so much shifted that they are no longer on top of a tube, see Fig. 5.7(a),
or liftoff problems: a dense packaging of structures in a small area can show
shorts.

Of crucial importance is the alignment procedure before writing these final
structures with the EBPG. Particularly for the SET bridge structures it is im-
portant that the height misalignment is not much greater than 5 µm from that
of the calibration marker of the holder. A shifted pattern, as well as liftoff prob-
lems are visible in Fig. 5.7(b). Finally, it is of interest to note that unexpected
problems can also occur as shown in Fig. 5.7(a). Here, one part of the nanotube
is cut-off during the fabrication process. To avoid problems of this kind one can
generally avoid sonicating during lift-off.

5.5 Measurement Setup

After the fabrication is complete and room temperature measurements have
been performed the samples are placed inside a Leiden Cryogenics dilution re-
frigerator, see Fig. 5.8 and cooled down to mK temperatures. A number of
systems such as the cold traps and 1 K-Pot are first used to bring the tempera-
ture down to 1 K. Then, a phase transition takes place inside the fridge mixing
chamber between two phases of Helium, the liquid phase and the dilute phase,
which consumes energy in the form of heat. This phase transition is responsible
for bringing the sample temperature even lower to about 30 mK.

All applications of voltages over the sample are performed through digital-
to-analog (DAC) converters which are controlled by a home-made computer
measurement program. For current measurements through the sample current
is first converted to voltage by means of an IV converter and then amplified by
an iso-amp.
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5.5. MEASUREMENT SETUP

Figure 5.8: Photo of the measurement setup. On the right side sits the Gas
Handling Unit. The refrigerator is situated in the middle, between the Gas
Handling Unit and the matrix modules with the DACs at the left edge. All
sample currents and voltages, as well as the data storage, is carried out through
home-made computer software.
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Chapter 6

Measurements

In the first part of this chapter we discuss the characteristics of uncoupled
Single Electron Transistors. The results obtained prove our ability to repro-
ducibly fabricate Single Electron Transistors with proper characteristics. In the
second part the characteristics of a double carbon nanotube quantum dot are
derived. Excited states are visible and a series of experiments are carried out.
In the third and final part an attempt is made to use a SET located far away
from the dot as a charge detector.

6.1 Uncoupled Single Electron Transistors

We repeatedly fabricated test SET structures to optimize and vary rele-
vant parameters. After a series of tests the optimum parameters for our design
were found to be an evaporation angle of ±15o, oxidation time of 10 minutes
in the loadlock under a pressure of 100µbar and resist thicknesses of 150 and
100 nm respectively for the two PMMA resist layers. The bridge length and

(a) (b)

Figure 6.1: a) DesignCAD image of an SET grid sample. In each column
and row the width and length of the SET bridges are varied respectively. b)
After determining the optimum dimensions the chosen SET was written on a
sample with actual markers to evaluate reproducibility of fabrication under more
realistic conditions. Here, eight SETs are connected to thicker contact pads.
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width were chosen to be 100 and 75 nm each. After a first rough test on SET
grid structures to determine proper width and length ranges, the SETs that
showed the most reproducibility were tested on a sample with markers for a
better simulation. For samples such as those of Fig. 6.1(b) our reproducibility
increased from about 40% to more than 90% during the tests. At room tem-
perature the obtained tunnel junction resistances were reproducibly found to
be in the range of 100 to 250 kΩ. We randomly chose and cooled down SETs

(a) (b)

(c)

Figure 6.2: SEM images of three of SET test structures randomly selected
and tested under low-temperature conditions. The tunnel junctions are clearly
visible. The tunnel junction area is approximately (120 nm)x(30 nm), in good
agreement with our designs. The gate is further away from the structure to
avoid liftoff problems.

with junction resistances in the above range. Stability diagrams of differential
conductance dI/dV versus bias and gate voltage are obtained for all three of the
devices shown in Fig. 6.2. The sharp contrast between Fig. 6.3(a) and a normal
Coulomb diamond pattern such as that of Fig. 3.4 is due to superconductivity.
Cooper pairs and quasiparticles tunnel through the junctions instead of single
electrons. Although the change in the charge of the island is one, three particles
have effectively tunneled through the junctions. By comparing Fig. 6.3(a) to
literature we extract the value for the superconducting gap for aluminum. For
bulk, theory gives ∆ ≈ 0.21 meV. According to literature [22] the position of
the blue arrow in Fig. 6.3(a) corresponds to (4∆/e). We then extract a value of
approximately 0.19 meV, very close to the theoretical value. It should be noted
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(a)

(b)

Figure 6.3: Differential conductance measured for sweeping both SET gate and
bias voltages for the sample from Fig. 6.2(a). a) Superconducting Coulomb
diamonds. We extract the value of the charging energy (red arrow) and the value
of the superconducting gap ∆ of Aluminum (blue arrow). b) After application
of a magnetic field of B = 1 Tesla superconductivity is destroyed. The difference
between (a) and (b) can be attributed to simultaneous tunneling of Cooper pairs
and quasiparticles through the junctions [16].

that the value of ∆ can fluctuate in thin superconducting aluminum films due
to grain formation for instance [23]. By application of a magnetic field B = 1
Tesla superconductivity is destroyed. The charging energy can be directly read
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off Fig. 6.3(b) to be EC = 0.3 meV while the conversion factor from voltage to
energy, α, is approximately α = 0.015. Using the respective formulas (see page
29) we obtain the capacitances as CL = 128 aF, CR = 114 aF and CG = 1.1 aF
respectively.

(a)

(b)

Figure 6.4: Coulomb diamond plots in the normal state obtained for samples
no. 2 and 3. The charging energies are in both cases approximately the same.

Similarly the coulomb diamond plots for samples in Fig. 6.2(b) and Fig. 6.2(c)
were extracted. We calculate the capacitances for the sample of Fig. 6.2(b) and
find them to be CL = 45 aF, CR = 62 aF and CG = 1.15 aF. The small CG is
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6.2. CARBON NANOTUBE DOUBLE QUANTUM DOT

due to the weak coupling of the gate due to its large distance. In some cases as
for instance in Fig. 6.4(a) the single, double and triple-electron tunneling areas
are visible next to the blockaded regions.

We plot the current as a function of VG at VSD = 0 mV for the device from
Fig. 6.2(b). We compare the shape of the Coulomb peaks obtained to theory
[24] given by

G

G0
= cosh−2 δE

2.5kT
(6.1)

There is a good correspondence between theory and experiment. The sample
temperature we extracted was approximately 800 mK, quite higher than T =
37 mK which was the mixing chamber temperature. We attribute the elevated
temperature obtained from theory to our junctions’ resistance values: Eq. 3.1
should hold in order for Eq. 6.1 to hold. In our case each tunnel junction, whose
value is set by the sample oxidation time, has a resistance that is larger, but
not significantly, than the resistance quantum RQ. This produces roughly the
same effect that an elevated temperature would have on the sample, namely
tunnel-broadened peaks.

Figure 6.5: Black line corresponds to current vs gate voltage for sample no. 2 for
small bias. The red line is a fit to theory, see Eq. 6.1. The agreement between
the two is very good, although the temperature used for the fit is higher than
the actual temperature.

6.2 Carbon Nanotube Double Quantum Dot

We first describe the double quantum dot formed on the nanotube and ex-
tract some of the relevant characteristics of the device from theory. We then
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conclude with an attempt to use an SET situated about 22 µm away from the
nanotube as a charge detector for the double dot. At room temperatures

Figure 6.6: Current versus left and right side gate voltages for a 1 mV bias at
200 mK. Honeycomb patterns are clearly visible throughout the scanned region.

the working SET displayed a resistance of 300 kΩ while our working nanotube
sample had a resistance of 150 kΩ. The nanotube segments forming the two
dots are sized approximately 400 nm each. Sweeping both side gates SGL and
SGR of the two dots and measuring the current we observe the appearance of
honeycombs over a large energy range for a 1 mV bias, see Fig. 6.6. Cotunneling
is also visible as a non-zero current away from the triple points. For a larger
bias of 1.5 mV and proper values on the top gates to suppress cotunneling clear
triangles appear together with clear excited states, see Fig. 6.7. In certain ar-
eas, with no magnetic field applied we observe two fold symmetry and it is also
interesting to note that in a few areas there exist triangles with different base
slopes, see Fig. 6.9, where probably another dot is also active somewhere in the
system.

We proceed to characterize the double quantum dot according to theory. By
reading off the vertical and horizontal dimensions of the honeycomb cell, ∆VSGL

and ∆VSGL, the capacitances CSGL and CSGR are found through Eq. 3.12 to
be CSGR = 6.6 aF , CSGL = 5.7 aF respectively. By using Eq. 3.14 the voltage
to energy conversion factors are extracted to be αSGR = 0.27 and αSGL = 0.16.
The total single dot capacitances are then calculated to be CΣL = 24 aF, while
CΣR = 35 aF. With these two last values in mind we read off the the vertical
and horizontal voltage separation between the triple points of Fig. 6.10 and
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6.2. CARBON NANOTUBE DOUBLE QUANTUM DOT

Figure 6.7: A zoom on some of the honeycombs. For values VSD = 1.5 mV,
TGM = 150 mV, TGL = 150 mV, TGR = 300 mV triangles and excited states
are clearly visible while cotunneling is strongly supressed.

Figure 6.8: Zoom in on some of the honeycomb patterns for a bias voltage of 0.5
mV. The dimensions of the honeycomb outlined in white, ∆VSGR and ∆VSGL,
were used to extract CSGR and CSGL respectively. We find CSGR = 6.6 aF and
CSGL = 5.7 aF respectively.
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Figure 6.9: Zoom in on the honeycomb pattern for a bias voltage of -1.5 mV.
Two groups of triangles, outlined in yellow and green, are observed with different
slopes for their basis. Two fold symmetry is also observed for the triangles
outlined in yellow.

Figure 6.10: Zoom in on the bottom left corner of the honeycomb outlined in
white in Fig. 3.13. The voltage offset in the vertical and horizontal direction
between the two triple points can be used to extract Cm. We obtain a value of
Cm = 1.54 aF.
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plug everything in Eq. 3.13. We find a value of Cm = 1.54 aF. The capacitances
between left dot and source, and right dot and drain are simply given by the
remaining CL = 28.3 aF and CR = 15, 85 aF respectively.

We next focus on a single area. Keeping the middle barrier, Tm, on zero we
swept the bias voltage from 0.5 mV to −0.5 mV in 1 step. We fit the measured
current trace at the middle of the triple points of Fig. 6.11(a) and Fig. 6.11(b).
The lineshape is nicely fitted with a Lorentzian except for a small discrepancy
on the absorption side.

(a) (b)

(c) (d)

Figure 6.11: One pair of triple points for positive (Fig. 6.11(a)) and negative
(Fig. 6.11(b)) bias of 0.5 mV and -0.5 mV respectively. Current lineshapes of
(a) and (b) are plotted in Fig. 6.11(c) and Fig. 6.11(d). Fig. 6.11d appears
inverted. The lineshapes can be fitted well by a Lorentzian [15].

From the maximum current and the width of the resonances for forward and
backward bias one can extract all relevant parameters for the tunnel rates. Γ1

stands for tunneling into the left dot from the source, Γ3 for tunneling into the
right dot from drain, and |t12| is the tunnel rate between the two dots.

We focus on the triple point depicted in Fig. 6.11. For larger bias the triple
point evolves into a triangle. Fig. 6.12 was obtained for bias voltages of 1.5
mV and -1.5 mV respectively with the middle tunnel barrier on ground. We
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(a)

(b)

Figure 6.12: Top and bottom left: the triple point of Fig. 6.11 evolves into a
triangle by application of a bias of 1.5 mV (top left) and -1.5 mV (bottom left)
respectively. One excited state is visible in reverse bias but does not appear
in forward bias. Top and bottom right: Schematic level configurations for the
two dots that could explain the appearance of the excited state in reverse bias.
Blue line denotes ground state transport, dashed yellow denotes excited state
transport. For a more detailed description of all possibilities see text.
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observe that one extra excitation comes in the transport window for negative
bias but does not appear for positive bias. This excited state belongs to the right
dot in accordance with Fig. 3.10(a). We assume n-type transport and extract
possible level schemes in Fig. 6.12. We first examine Fig. 6.12b. Throughout
the base of the triangle the ground states of the two dots are always aligned.
In situation 2 the two ground states are aligned with the right lead and the
resonant current is significant. Current through the excited state of the right
dot is not possible since it lies higher in energy than the ground state of the
left dot. As we move from situation 2 to 3 the voltage on the left gate, SGL,
is decreased and therefore the ladder of the electrochemical potential of the
right dot is shifted up. Initially the result is that the two ground states become
misaligned so that current decreases. Only inelastic contributions to current
remain. At some point however, denoted by ∗, the right dot excited state comes
in resonance with the left dot ground state and current increases again. This
increase in current is visible at ∗ and throughout the line that runs parallel to
the base of the triangle since for all lines parallel to the base the electrochemical
potentials of the two dots move in unison. Decreasing the side gate voltage
SGL even further brings the left dot GS further up and away from the right
dot excited state. An electron entering either the excited or the ground state of
the right dot through the left lead is not in resonance either with the ground or
excited state of the right dot anymore. Current therefore drops.

We then turn to the case of forward bias, see Fig. 6.12a. We proceed in the
same way as above but start from situation 1. Here the two ground states are
aligned with the right lead. To move from situation 1 to 3 the left side gate
voltage, SGL has to be increased. This causes the left ground state to shift
downwards. When this happens, an electron entering the right dot can only be
tunnel inelastically to the left dot and current therefore drops. As the excited
state of the left dot lies higher than the electrochemical potential of the right
lead transport through it is not possible. In the same way, if we start from situ-
ation 2 and move towards situation 3 the left ground state will be pinned to the
right lead while the electrochemical potential of the right dot will start shifting
up. Although transport through the right dot excited state is possible since it is
located in the transport window, it is never elastic and therefore current is low.
Effectively, for forward bias the left dot lies for all possibilities at the same or
lower value than the right dot ground state. The right dot excited state is thus
always higher than the left dot ground state and will at best contribute to trans-
port only inelastically. For this reason the right dot ES never comes in resonance
with the left dot GS and thus it never shows up in transport under forward bias.

The coupled quantum dots can be modeled as a two-level system, in other
words only one level in each dot is of significance as for instance two ground
states. Then, transport through the system can occur in one of two ways: if
the GSs are are aligned (resonant tunneling) the current is elastic as no energy
is dissipated. When the two levels are misaligned there has to be some sort of
medium that offers/receives the energy mismatch between the electrochemical
potentials of the two dots. This medium could be for example photons (Photon
Assisted Tunneling) or phonons.

In large bias triangles like the ones in Fig. 3.10(a) the elastic component of
the current peaks at ε = 0, that is, the elastic current peaks throughout the
base of the triangle where the ground states are aligned. Finite current inside
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(a) (b)

(c) (d)

Figure 6.13: Zoom in on one pair of triangles at a bias of 1.5 mV. The two
triangles fully overlap. The middle tunnel barrier TGM is progressively changed
from -200 mV (a) to -400 mV (b), -600 mV (c) and finally to -700 mV (d). One
extra excitation appears at the top of the triangle at (d). The current linetraces
are taken in the middle of the triangles and in parallel to the left side gate
voltage SGL.

the triangles belongs to inelastic tunneling events. Theory predicts [16] that
inelastic tunneling for a two level system such as our dots, coupled to a bosonic
environment has a |t12|2 dependency. Therefore by tuning the tunnel barrier
between the dots the inelastic current changes. If there exist modes of the
bosonic environment that can affect transport they will show up as an increase
in inelastic current.

We focus on one specific triangle and vary the middle barrier Tm in steps from
0 mV to -900 mV in an attempt to observe excited states mediating transport.
This would generally show up as an overall increase in current as we move
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Figure 6.14: Current versus the side gate voltage SGL for the four situations
depicted in Fig. 6.13. Different colors correspond to different values on the
middle barrier TGM . Black color corresponds to a value -200 mV, red to -400
mV, green to -600 mV, and finally blue to -700 mV on TGM .

inside the triangles further away from the triangle base. In the ideal case that
the modes of the bosonic environment are perfectly discrete and observable, the
expected increase in current could come in discrete steps and would show up
as additional lines running parallel to the triangle base as the middle barrier is
varied. Fig. 6.13 shows that for a value of TGM = −700 mV one excited state
appears on the top of the triangle. This excited state is spaced approximately 5
meV from the ground state transition. We plot in Fig. 6.14 the current linetraces
obtained for all four cases of Fig. 6.13. With the exception of the excited state
mentioned above no other excited states are visible as no increase in overall
inelastic current is observed by sweeping TGM . The origin of the excited state
of Fig. 6.13d remains undetermined as this honeycomb region shifted in the next
measurements and could not be located again.

6.3 A Single Electron Transistor as a Charge
Detector

We use an SET located 22 µm away from the nanotube as a charge sensor
despite its significant distance from the dots. Without applying a magnetic field
we varied the bias and gate voltage of the SET and measured the respective
Coulomb diamond pattern in Fig. 6.15. As the diamonds are not fully closed
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the SET is still in its superconducting state. We measured a charging energy of
about 1.3 meV and a respective resistance of 300 kΩ as mentioned earlier. This
value is roughly twice what we expect for our oxidation time. Compared to our
test structures this SET shows somewhat poorer characteristics.

To check how strongly the left (SGL) and right (SGR) side gates couple to
the SET we compare them to the actual SET side gate. We first vary SGL and
then SGR from -1000 mV to 1000 mV respectively, while biasing the SET at
100 µV , see Fig. 6.16.

Comparing the number of Coulomb peaks in each case for the same energy
range we conclude that SGL is still coupled to the SET, 81% as much as the
actual SET gate. SGR however seems to be minimally coupled as in the energy
range we measured only half a Coulomb oscillation was recorded. We speculate
that this is due to the position of SGR on the wafer: SGL, and the line con-
necting it to the contact pads screens the SET completely from SGR. Without

Figure 6.15: Current versus SET bias and side gate voltages obtained at 70 mK.
The SET appears to be still in the superconducting state.

putting voltages on the dot barriers, we biased the SET at 100 µV and the
nanotube at 500 µV respectively. We first swept the left side gate SGL from -1
V to +1 V, and then the right side gate SGR in the same range as SGL.

We simultaneously measure the sharp current peaks through the nanotube
and the SET as a function of the left nanotube side gate SGL, see Fig. 6.17, and
compare the voltages at which nanotube current peaks occur to the respective
voltage values on the SET Coulomb peaks. At a first glance no real charge
sensing is observed: for the voltage values where the nanotube coulomb oscilla-
tions occur the SET’s Coulomb peaks are not significantly affected as we would
expect from theory. No clear distortion of the SET peaks is observed neither
in the bottom/top parts of the peaks were the phenomenon would be weakest,
nor, most importantly, halfway up the peaks at their most sensitive area.

By zooming in more closely in Fig. 6.18 we see that although certain tun-
neling events on the tube coincide with small distortions of the Coulomb peaks,
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(a) (b) (c)

Figure 6.16: SET Coulomb peaks as a function of SET side gate (a), carbon
nanotube left side gate SGL (b) and carbon nanotube right side gate SGR (c).
Note that SGL is only somewhat less coupled to the SET than the SET side
gate, while SGR seems to be minimally coupled. In (a) the SET is biased at 50
µV while for (b) and (c) the SET bias is 100 µV.

Figure 6.17: Charge sensing attempt while sweeping SGL. Sharp peaks (black)
correspond to the nanotube while Coulomb oscillations (red) to the SET. The
SET measurement is magnified by (x6) and shifted vertically for clarity. A zoom
in on one of the oscillations is displayed in Fig. 6.18.

these distortions are in fact rather weak. There are also numerous cases where
distortions in the SET peak heights do not coincide with actual tunneling events
in the nanotube and therefore it appears that without compensation the SET
cannot act as a charge sensor. A number of factors could be limiting the charge
sensing capability of our SET: a) the SET is too far away from the tube, b)
our SET quality is not optimum as our test structures, c) the SET is sensitive
to electrostatic switching events in the environment other than the tube, and
d) the noise from our setup, particularly the pumps, also could contribute to

55



CHAPTER 6. MEASUREMENTS

non-clear SET Coulomb peaks. Finally, it seems the most important factor

Figure 6.18: Zoom in one of the areas of Fig. 6.17. Even halfway up the SET
Coulomb peaks where sensitivity is maximum there is no significant change in
the peaks due to simultaneous tunneling events on the tube (black). No charge
sensing is observable.

Figure 6.19: Charge sensing attempt while sweeping SGR. Sharp peaks (black)
correspond to the nanotube while Coulomb oscillations (blue) to the SET. SET
measurements are magnified and shifted vertically for clarity.

limiting charge sensing is the stray capacitance of the long side gate metal line
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Figure 6.20: SET current trace while sweeping the nanotube left side gate (SGL)
and in reverse the SET side gate. The different coupling between the two to the
SET is taken into account. The SET current remained constant thus displaying
compensation although no charge sensing is found.

connecting it to the contact pads. The size and position of this line is such that
the SET predominantly senses the voltage on it rather than any voltage on the
nanotube.

We bias the SET at its points of highest sensitivity: halfway up a Coulomb
peak to perform compensation. To this end we sweep the voltage on the tube
SGL and simultaneously vary the voltage on the SET gate in reverse direction,
with values 0.81 smaller than those on SGL to compensate, see Fig. 6.20. The
current trace remains constant over a large energy range. Thus, our compensa-
tion attempt is successful at keeping the current pinned. However, no current
sawtooth characteristics are visible and therefore charge detection proved in to-
tal to be unsuccessful in this particular device even with charge compensation.
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Conclusions

The first goal of this project was to reproducibly fabricate Single Electron
Transistors. The second goal was to fabricate Carbon Nanotube Double Quan-
tum Dots and the final objective was to use the SET as a charge sensor on
carbon nanotube double dots to extract stability diagrams and relevant relax-
ation times. Based on our work the following conclusions can be drawn.

• Single Electron Transistors have been reproducibly fabricated. All the
relevant tunable parameters are under our experimental control.

• Narrow top gated Carbon Nanotube Double Quantum Dots have been
fabricated and characterized according to theory.

• Single Electron Transistors have been fabricated together with Carbon
Nanotube Double Quantum Dots.

• We observe carbon nanotube double quantum dot excited states.

• Our attempt to vary the middle tunnel barrier and observe increased in-
elastic contribution to the current was inconclusive. Although one excited
state appears at large negative values of the middle barrier, its origin is
unclear.

• Our attempt to use an SET located far away from the double dots as a
charge sensor was unsuccessful. Compensation was however successful.

• For charge sensing, Single Electron Transistors need to be not further
than a few µm from the double dot. For SETs that are located further it
would be useful to extend the SET island closer to the dots through the
fabrication of an antenna so that the coupling is better.

• The design for such structures should be such that stray capacitances are
not dominant in determining the SET current signal.
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Appendix A

Electrostatic energy of
quantum dot systems

We present a derivation of the electrostatic energy of quantum dot systems.
We first start by briefly discussing the method employed for solving the electro-
statics.

A.1 Electrostatics of a system of N conductors

Let there be a system of N conductors. For each conductor we can define one
capacitance connecting it to ground and another (N-1) capacitances connecting
it to the rest of the conductors in the system. This results in a total of N(N+1)/2
capacitors. The total charge of one of these conductors is then the sum of the
charges on all the capacitors connected to it

Qj =
N∑

k=0

qjk =
N∑

k=0

cjk(Vj − Vk) (A.1)

where Vj is the electrostatic potential of conductor j, cjk the respective ca-
pacitance connecting conductor j to conductor k, and V0 = 0 the potential on
ground. The above equation can be expressed more compactly in matrix form
as

−→
Q = C

−→
V (A.2)

where C is the so-called capacitance matrix,
−→
Q a vector containing the charges

on all conductors and
−→
V a vector with the individual potentials on every con-

ductor. A diagonal element of the capacitance matrix contains the sum of all
capacitances of this conductor to all the rest in the system

Cjj =
N∑

k=0,k 6=j

cjk (A.3)

For instance for a system of three conductors C11 = C01 + C12 + C13. An off-
diagonal element of the capacitance matrix is minus the capacitance between
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conductor j and conductor k, or Cjk = Ckj = −cjk. The electrostatic energy of
the system of N(N+1)/2 capacitors then has a total energy given by

U =
1
2
−→
V C

−→
V =

1
2
−→
V
−→
Q =

1
2
−→
QC−1−→Q (A.4)

For a more realistic network voltage sources also have to be included. They
can be treated as nodes with large capacitances to ground and large charges on
them.

A.2 Single Quantum Dots

Figure A.1: A schematic representation of a quantum dot circuit. The dot is
coupled capacitatively to source (L), drain (R) and a nearby gate (G). Particle
exchange occurs only through tunneling from the leads.

The total charge Q1 on the dot can be written as the sum of the charges on
all capacitors connected to the dot

Q1 = CL(V1 − VL) + CG(V1 − VG) + CR(V1 − VR) (A.5)

Q1 + CLVL + CGVG + CRVR = CV1 (A.6)

with C = CL+CR+CG the total dot capacitance. Using Eq. A4 and substituting
Q1 = −(N1 −N0)|e| we obtain

U(N1) =
[−(N1 −N0)|e|+ CLVL + CRVR + CGVG]2

2C
(A.7)

If we take into account quantum mechanics and add the single particle energies
to the above formula we end up with Eq. 3.3.

A.3 Double Quantum Dots

We write the total charge Q1(2) on dot 1(2) as the sum of the charges on all
the capacitors connected to dot 1(2), see Fig. A.2.

Q1 = CL(V1 − VL) + CG1(V1 − VG1) + Cm(V1 − V2) (A.8)

Q2 = CR(V2 − VR) + CG2(V2 − VG2) + Cm(V2 − V1) (A.9)
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N N1 2
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Figure A.2: A double quantum dot modeled as a network of resistors and ca-
pacitances. The dots are represented by the two circles with N1(2) electrons on
dot 1(2). The dots are coupled to the leads by a resistor RL(R) and a capaci-
tor CL(R) and to each other by a resistor Rm and a capacitor Cm. Two gate
voltages Vg1(2) are coupled to the dots through capacitances Cg1(2).

This can be rewritten as(
Q1 + CLVL + CG1VG1

Q2 + CRVR + CG2VG2

)
=
(

C1 −Cm

−Cm C2

)(
V1

V2

)
(A.10)

where C1(2) = CL(R) +CG1(2) +Cm The charge on each dot is Q1(2)=−N1(2)|e|.
Then according to Eq. A.4 the electrostatic energy reads

U(N1, N2) =
1
2
N1Ec1 +

1
2
N2Ec2 + N1N2Ecm + (A.11)

+f(VG1, VG2) + g(VL, VR) + h(VG1, VG2, VL, VR)

f(VG1, VG2) =
1
e
[CG1VG1(N2Ecm + N1Ec1) + CG2VG2)N1Ecm + N2Ec2]

+
1
e2

[
1
2
C2

G1V
2
G1Ec1 +

1
2
CG2VG2Ec2 + CG1CG2VG1VG2Ecm]

g(VL, VR) =
1
e
[CLVL(N2Ecm + N1Ec2) + CRVR(N1Ecm + N2Ec2] +

+
1
e2

[
1
2
C2

LV 2
LEc1 +

1
2
C2

RV 2
REc2 + CLCRVLVREcm]

h(VG1, VG2, VL, VR) =
1
e2

[CLVLCG1VG1Ec1 + CRVRCG2VG2Ec2 +

+CLVLCG2VG2Ecm + CRVRCG1VG1Ecm]

The charging energies Ec1, Ec2 as well as the coupling energy Ecm are given as

EC1 =
e2

C1

(
1

1− C2
m

C1C2

)

EC2 =
e2

C2

(
1

1− C2
m

C1C2

)

ECm =
e2

Cm

(
1

C1C2
C2

m
− 1

)
(A.12)
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They are exactly the same as those given in Chapter 3.2. For the case of
VL = VR = 0 and Q1(2) = −N1(2)|e| the total energy then reads

U(N1, N2) =
1
2
N2

1 EC1 +
1
2
N2

2 EC2 + N1N2ECm + f(Vg1, Vg2) (A.13)

f(Vg1, Vg2) =
1
e
{Cg1Vg1(N1EC1+N2ECm)+Cg2Vg2(N1ECm+N2EC2)} (A.14)
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